Qualifying Exam, Spring 2021 Solid Mechanics

 \ast This is a closed-book test (with cheat sheets included), and no calculator is allowed.

* Work THREE out of the four problems, and clarify which three you want graded.

I want problems #, #, and # to be graded.	led.
---	------

Problem 1. An isotropic elastic sphere (Young's modulus 20& GPa, shear modulus 79.2 GPa) of

radius 5 cm is under the uniform stress field

$$\boldsymbol{\sigma} = \begin{bmatrix} 6 & 2 & 0 \\ 2 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} MPa$$

Find the change of volume for the sphere.

Problem 2. For any stress state σ we define the deviatoric stress *s* to be $s_{ij} = \sigma_{ij} - (\sigma_{kk}/3)\delta_{ij}$, where σ_{kk} is the first invariant of the stress tensor σ .

(a) Calculate the first invariant of the deviatoric stress.

(b) Evaluate deviatoric stress for

$$[\sigma] = \begin{bmatrix} 100 & 500 & -200 \\ 500 & 300 & 400 \\ -200 & 400 & 900 \end{bmatrix} kPa$$

(c) Show that the principal directions of the stress tensor coincide with those of the deviatoric stress tensor.

Problem 3. Given a cantilever beam of circular cross section subjected to a shear force *F* and torque $T = 2F \cdot l_{AB}$, calculate the maximum value of *F*.

Consider the material to be brittle with ultimate tensile and compressive strengths $S_{ut} = 40 \ kpsi$ and $S_{uc} = 60 \ kpsi$. Use Coulomb-Mohr failure criterion, see failure envelope on the left.

Use length $l_{AB} = 20$ in, diameter d = 1.2 in, and safety factor n = 2.

Neglect shear stress due to shear force. Make sure to indicate the point in the beam with max effective stress

Problem 4. A simply-supported beam of solid square cross section with a side length h = 3 cm and a total length L = 1.5 m is subjected to a static point force F = 1000 N in the middle.

Calculate:

1. the safety factor against fracture. Assume initial crack length a = 3 mm.

2. the critical crack length for the given force. Assume the geometry factor β does not deviate significantly from the value given below for the considered range of crack lengths.

Use fracture toughness of the material $K_{IC} = 16 MPa\sqrt{m}$, and stress intensity modification factor (aka geometry factor) $\beta = 1.1$.

Focus on mode I only. Make sure to show the bending moment diagram.