
Space Dynamics and Controls Problems for Qualifying Exam - Fall 2013

Amit Sanyal

Problem 1

A satellite in Earth orbit passes through its perigee point at an altitude of 200 km above the Earth’s

surface and at a velocity of 7,850 m/s. Calculate the apogee altitude of the satellite and the eccentricity

of the orbit. Consider the Earth to be perfectly spherical with a radius of RE = 6378 km and the gravity

parameter for the Earth to be µE = 398600 km3/s2.

Solution 1

Earth’s radius RE = 6378 km. Thus, the radial distance of the satellite from the Earth’s center (consid-

ered the focus of its orbit) at perigee is rp = RE +200 = 6578 km. The velocity of the satellite at perigee

is perpendicular to the radial vector (zero azimuthal component) with magnitude given as vp = 7.85

km/s. Therefore the specific angular momentum of the satellite orbit has the magnitude

h = rpvp = (6578)(7.85) = 51637.3 km2/s.

The gravity parameter for the Earth is µE = GME = 398600 km3/s2. Therefore, the semi latus rectum

for the orbit is

p =
h2

µE
= 6689.44 km = a(1− e2),

where a is the semi major axis and e is the eccentricity. Since rp = a(1− e), we have

p

rp
=
a(1− e2)

a(1− e)
= 1 + e.

From the calculated value of p and the given value of rp, we obtain

p

rp
= 1.0169 ⇒ e = 0.01694.

The value of the semi-major axis of the orbit is now obtained as

a =
rp

1− e
=

6578

0.9831
= 6691.36 km.

This leads to the apogee radial distance being

ra = a(1 + e) = 6804.72 km,

and therefore, the altitude at apogee is

za = ra −RE = 426.72 km.
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Problem 2

A satellite is in an Earth orbit of eccentricity e = 0.00132, inclination i = 89.1◦, and argument of periapsis

ω = 261◦ in a geocentric equatorial frame. Its perigee altitude is zp =917 km. What is the maximum

altitude achieved by the satellite above the equator at any time in its orbit? Let the right ascension of

the ascending node of the orbit be Ω = 27◦. Find the position vector of the satellite at its highest point

above the equator in the geocentric equatorial frame [Assume the Earth to be spherical and uniform,

with its radius equal to 6378 km].

Solution 2

From the given data, we have

rp = zp +RE = a(1− e) ⇒ a =
zp +RE

1− e
= 7304.6 km.

There are two points where satellite is above equator, corresponding to true anomalies of θ1 = 2π − ω =

1.7279 rad and θ2 = θ1 + π = 4.8696 rad. At these points, the radial distances (using the polar formula

for Keplerian orbits) are

r1 =
a(1− e2)

1 + e cos θ1
= 7306.1 km

and

r2 =
a(1 − e2)

1 + e cos θ2
= 7303.1 km.

Since r1 > r2, the max altitude above the equator is z1 = r1 −RE = 928.1 km. This is also the point of

the ascending node of the orbit, as it is the point where the true anomaly is 2π−ω radians. The position

vector of the satellite at this point in its orbit is

b1 = r1



cos Ω
sinΩ
0


 =



6509.8
3316.9

0


 km.
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Problem 3

Consider a rigid dumbbell-shaped satellite in motion around a spherical Earth, with gravitational param-

eter µE = GME , where G is the universal gravitational constant and ME denotes the mass of the Earth.

The satellite is idealized as two point mass particles of mass m each at the two ends of a rigid massless

link of length 2l. Let b denote the position vector of the center of the satellite in an Earth-centered inertial

coordinate frame and let its attitude be given by R, which is the rotation matrix from the Earth-centered

inertial frame to a right-handed coordinate frame fixed at the center of the dumbbell satellite with its

x-axis along the length of the rigid link connecting the end masses. Consider m≪ME .

(a) Give mathematical expressions for the Newtonian gravity force vector and gravity gradient moment

vector due to the Earth on the dumbbell satellite. Express these vectors in both the Earth-centered

inertial frame and the coordinate frame fixed at the center of the dumbbell satellite.

(b) Assume that there are no control or other external forces or moments on the satellite besides those

due to gravity. Make use of your results in part (a) to obtain differential equations of motion for the

position vector and the attitude (orientation) of the satellite with respect to the Earth-centered inertial

frame. The differential equations should be expressed in terms of these quantities and their first and

second time derivatives; include physical constants as necessary.

Solution 3

(a) The gravity force vector on the dumbbell satellite is the resultant of the forces acting on the two end

masses due to Earth’s gravity. Let e1 = [1 0 0]T denote the dumbbell satellite’s body-fixed x-axis, which

is along the rigid link. Note that R denotes the rotation matrix from ECI to satellite-fixed body frame.

Therefore, the force vector expressed in the inertial frame is given by

F I
g (b,R) = mµE

(
b+ lRTe1

‖b+ lRTe1‖3
+

b− lRTe1

‖b− lRTe1‖3

)
.

The force vector in the body-fixed coordinate frame is

FB
g (b,R) = RF I

g (b) = mµE

(
Rb+ le1

‖b+ lRTe1‖3
+

Rb− le1

‖b− lRTe1‖3

)
.

The gravity gradient moment on the dumbbell satellite is the resultant of the moments due to the forces

on the two end masses about the center of the satellite. In the inertial frame, the gravity gradient moment

is given by

M I
g (b,R) = lRTe1 ×

mµE(b+ lRTe1)

‖b+ lRTe1‖3
− lRTe1 ×

mµE(b− lRTe1)

‖b− lRTe1‖3

= mµEl(b×RTe1)

(
1

‖b− lRTe1‖3
−

1

‖b+ lRTe1‖3

)
.

Expressed in the body-fixed coordinate frame, this moment is

MB
g (b,R) = mµEl((Rb)× e1)

(
1

‖b− lRTe1‖3
−

1

‖b+ lRTe1‖3

)
.
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(b) The equations of motion for the position vector and attitude can be obtained from Newton-Euler

mechanics with the applied force and moment due to gravity. For the position vector, the equation of

motion is

mb̈ = F I
g (b,R) = mµE

(
b+ lRTe1

‖b+ lRTe1‖3
+

b− lRTe1

‖b− lRTe1‖3

)
.

Let Ω be the angular velocity vector of the dumbbell satellite with respect to the inertial frame about

its center and let J be its inertia matrix, both expressed in its body-fixed frame. Then the attitude

equations of motion are

Ṙ = RΩ×,

JΩ̇ = (JΩ)× Ω+MB
g (b,R)

= (JΩ)× Ω+mµEl((Rb)× e1)

(
1

‖b− lRTe1‖3
−

1

‖b+ lRTe1‖3

)
,

where a× for a vector a is the skew-symmetric matrix cross-product operator given by

a× =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 .
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Problem 4

Consider a rigid body that is constrained to rotate about a fixed axis given by the unit vector ê =

[0.7032 − 0.1051 − 0.7032]T with a constant angular velocity vector ω = 0.05ê rad/s. The orientation

of the rigid body with respect to an inertial frame is given by the direction cosine matrix C(t) at time t,

which transforms vectors in the inertial frame to vectors in the body coordinate frame. Assume that the

body coordinate frame is initially aligned with the inertial frame, i.e., the initial direction cosine matrix is

the identity matrix (C(0) = I). Obtain an analytical expression for C(t) using Rodrigues formula, given

the constant angular velocity ω. Express the rotational kinematics using the set of 3-2-1 Euler angles

describing the (time-varying) direction cosine matrix. Explain why the 3-2-1 Euler angle description

becomes singular despite an existing analytic solution to C(t) in this case.

Solution 4

For a given constant angular velocity, the direction cosine matrix can be evaluated analytically as a

function of time using Rodrigues equation as follows:

C(t) = exp(−ω×t) = I − sin(‖ωt‖)(ê)× + (1− cos(‖ωt‖))
(
(ê)×

)
2
,

where ω is constant along the unit vector ê. For the given vector ω, substitute ‖ωt‖ = 0.05t in the above

formula. Note that this gives a periodic (sinusoidal) solution to the direction cosine matrix expressing

the rigid body attitude.

The angular rate for the 3-2-1 Euler angles is obtained from the angular velocity of the rigid body

according to the kinematic differential equation:



φ̇

θ̇

ψ̇


 = B(φ, θ, ψ)ω, where B(φ, θ, ψ) =

1

cos θ




0 sinψ cosψ
0 cosψ cos θ − sinψ cos θ

cos θ sinψ sin θ cosψ sin θ


 .

This kinematic equation has a singularity whenever θ is an odd multiple of π
2
radians (or 90◦). For the

given angular velocity vector and initial attitude, one can use the analytic expression for the direction

cosine matrix and the relation

θ(t) = sin−1
(
− C31(t)

)

to verify that the first encounter with such a singularity occurs around time t = 67 seconds.
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Space Dynamics and Controls Problems for Qualifying Exam - Fall 2012

Amit Sanyal

Problem 1

Consider a rigid spacecraft of massm, and inertia matrix J expressed in a spacecraft body-fixed coordinate

frame, in the proximity of a planet of mass M with spherical mass distribution. Assume that M ≫ m, an

inertial coordinate frame is fixed to the center of the planet, and the spacecraft and planet are isolated

from other gravitational influences. Does the center of mass and center of gravity of the spacecraft

coincide in general? Obtain an expression for the gravity gradient moment on the spacecraft, given

the position vector of the center of mass of the satellite (define all other notation used to express these

quantities). Using either Newtonian mechanics or variational mechanics, express the translational and

rotational dynamics equations of the spacecraft in its body coordinate frame.
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Problem 2

A satellite is in an Earth orbit of eccentricity e = 0.00132, inclination i = 89.1◦, and argument of periapsis

ω = 261◦ in a geocentric equatorial frame. Its perigee altitude is zp =917 km. What is the maximum

altitude achieved by the spacecraft above the equator at any time in its orbit? [Assume the Earth to be

spherical and uniform, with its radius equal to 6378 km].
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1.   Low Earth (LEO) orbits generally have a range in altitude between 150 km and 1000 km.    The 

Earth’s equatorial radius is 6378 km, and the Earth’s gravitational parameter is 398,600 km3/s2. 

a)  Find the corresponding range of periods (time for one orbit) for circular LEO orbits in minutes.  

b)  Find the corresponding range of speeds for circular LEO orbits. 

c)  Find the corresponding range of specific energy for circular LEO orbits. 

d)  For an elliptic LEO orbit with minimum and maximum altitudes equal to the bounds on the altitude 

range given above,  find the specific energy, period, and eccentricity of the orbit as well as the speeds 

at perigee and apogee. 

  



2.  Euler’s equations for rotational motion of a rigid spacecraft are given as 

[ ] [ ][ ]I I L      

where [ ]I  is the inertia matrix, 1 2 3( )T     is the angular velocity vector in body-frame 

coordinates, and L  is the applied torque. 

a)  Write out the three scalar equations which are equivalent to the above equation assuming that the 

body-fixed coordinate system is aligned with the principal body axes. 

b)  For the torque-free ( 0)L 

 

case of the scalar equations obtained in a), now assume the body is 

axially symmetric 1 2( )TI I I   and spinning about the 3b̂  body axis with constant speed 3  where 

1 2 3, ,I I I are the principal moments of inertia.  Assuming a non-zero nutation angle, obtain the 

precession frequency (i.e. the rate at which the angular velocity vector sweeps around the angular 

momentum vector) in terms of 3 3, ,TI I  . 

c)  Show that the resulting motion in b) is stable regardless if 3 TI I  or 3 TI I . 




