Qualifying Exam, Fall 2022
 Control

* This is a closed-book test (with a cheat sheet provided), and no calculator is allowed.
* Work THREE out of the four problems, and clarify which three you want graded.

I want problems \#
 , \# , and \#
 to be graded.

Problem 1. Consider the automobile suspension system shown in the right figure. Assume the masses, $m_{1}=m_{2}=1 \mathrm{~kg}$, the damper constant, $b=1 \mathrm{Ns} / \mathrm{m}$, and the spring constants $k_{s}=k_{w}=1 \mathrm{~N} / \mathrm{m}$. Define the system input as $r(t)$ and the system output as $y(t)$.
(1) Find the equations of motion for the system. (5 pts)
(2) Find the transfer function $\frac{Y(s)}{R(s)}$. 5 pts)

Problem 2. Consider the linear system $\dot{x}=A x+B u, y=C x$, where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

(1) Is the system controllable? Why or Why not? (5 pts)
(2) Is the system observable? Why or why not? (5 pts)

Problem 3. For a rigid spacecraft with principal moments of inertia $\left(\mathrm{kgm}^{2}\right)$:

$$
J_{x}=3000, J_{y}=2000, J_{z}=1000,
$$

and the equations of the rotational motion of the spacecraft without external torque can be obtained as

$$
\dot{\omega}_{x}=\left(\frac{J_{y}-J_{z}}{J_{x}}\right) \omega_{y} \omega_{z}, \quad \dot{\omega}_{y}=\left(\frac{J_{z}-J_{x}}{J_{y}}\right) \omega_{z} \omega_{x}, \quad \dot{\omega}_{z}=\left(\frac{J_{x}-J_{y}}{J_{z}}\right) \omega_{x} \omega_{y},
$$

Let $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}\omega_{x} \\ \omega_{y} \\ \omega_{z}\end{array}\right]$ and an equilibrium point is $x_{e}=\left[\begin{array}{l}x_{e 1} \\ x_{e 2} \\ x_{e 3}\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right](\mathrm{rad} / \mathrm{s})$.
(1) Derive linearized equations and state-space model of $\dot{x}=A x$. (5 pts)
(2) Analyze the stability of the linear system $\dot{x}=A x$. (5 pts)

Problem 4. The Furuta pendulum, an inverted pendulum on a rotating arm, is shown to the left in the figure below. The equations of motion for the system are given by

$$
J \ddot{\theta}-J \omega^{2} \sin \theta \cos \theta-m g l \sin \theta=0,
$$

where J is the moment of inertia of the pendulum with respect to its pivot, m is the pendulum mass, l is the distance between the pivot and the center of mass of the pendulum, and ω is the rate of rotation of the arm

(1) Derive the state equations using x_{1} and x_{2}. (5 pts)
(2) Determine the equilibria for the Furuta pendulum system where $J=1\left[\mathrm{kgm}^{2}\right], \omega=3[\mathrm{rad} / \mathrm{s}], m=$ $4[\mathrm{~kg}], g=9.8\left[\mathrm{~m} / \mathrm{s}^{2}\right]$, and $l=0.3[\mathrm{~m}] .(5 \mathrm{pts})$

