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Qualifying Exam 2022 
Select three problems 

 
Dynamics 

 Problem 1: (10 points) 
Two particles with mass m are attached by a linear spring with a spring constant k and 
unstretched length 2r0, as shown in Figure 1. Assume that the system dynamics stays in a plane. 
There is no net external force on the system, so you can use the center of mass of the system is 
the origin of an inertial frame.  

 

 

 

 

 

 

The goal is to obtain the possible motions of the system. Although not obvious at first, this 
system’s dynamics can be reduced to a single ordinary differential equation. 

1- Determine the second-order differential equations of motion whose solution would give 
r(t) and θ(t) as functions of time; but do not solve them. 
(a) Using Lagrange’s principle (2.5 points) 
(b) Using Newton’s law (2.5 points) 

2- Assume that the initial angular velocity is , the initial radial velocity is , and the 

initial separation 2r0 is the same as the unstretched length of the spring, determine an 
expression that relates  and r and the initial conditions. (2 points) 

3- Using the conservation of energy, find a single scalar expression relating  and r of the 

form (3 points) 
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Figure 1 
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 Problem 2: (10 points) 
As shown in Figure 2, particles 1 and 2, each of mass m, are connected by a rigid massless rod of 
length l. Particle 1 can slide without friction along the floor while particle 2 can slide without 
friction on the wall. The dumbbell starts from rest with a lean angle θ=5o and falls under the 
influence of gravity. 
(a) For what value of the angle θ will the dumbbell lose contact with the wall? (2 points) 
(Hint: start with two generalized coordinates, x and θ, where x is the distance from the wall to 
particle 2, but impose constraint x = 0) 
(b) For all that follows, consider the situation after the dumbbell loses contact with the wall (i.e., 
x>0). Find the 2nd-order equations of motion for x and θ. (3 points) 
(c) Use the Routhian procedure to find a 2nd-order equation of motion for just the angle θ. (2 
points) 
(d) Using constants of motion and initial conditions, find a 1st-order equation of motion of the 
form: (3 points) 

( )f   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
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Vibrations 
 Problem 3: (10 points)  

A machine of mass M  rests on a massless elastic floor, which is hinged at the wall, as shown in 

Figure 3(a). A shaker having total mass sm  and carrying two rotating unbalanced masses 

produces a vertical harmonic force 2 sinml t  , where the frequency of rotation may be varied. 
The floor is made of steel (Young’s modulus, E=200GPa) with the cross-section of b=40cm 
wide, h=2cm thick, and L=4m long; the total mass of the machine and shaker is Meq=100kg; and 
the forcing magnitude is 500N when the operational speed of the shaker is at 300 rpm. 
 
In the equivalent/simplified spring-damper-mass system (see Figure 3(b)), the equivalent mass 

(Meq) and stiffness (Keq) are, respectively, equal to: Keq=  , I= , and Meq=ms+M. 

1- Using Figure 3(b), determine the equation of motion using Newton’s second law and the 
natural frequency. (2 points) 

2- For an undamped system (c=0), what is the resulting steady-state amplitude of the 
machine-shaker setup due to rotating unbalance? (2 points) 

3- For a damped system, the resonant amplitude of the system is Xr=3.41cm, determine the 
damping coefficient c of this system. (3 points) 

4- Suppose an additional component is rigidly attached to the machine. This component 
adds an additional mass of 25kg. Determine the particular solution amplitude of 
oscillation for the undamped system with this additional mass. (3 points) 

 

 
                                            Figure 3(a)                                                         Figure 3(b) 
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 Problem 4: (10 points) 

1- Considering l as the free length of the spring with a stiffness k, demonstrate that the 
equations of motion of a spring-pendulum system shown in Figure 4 can be expressed as: 
(3 points) 
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2- Determine the coupling terms and show their types (linear or nonlinear). Please justify. (1.5 
points) 

3- Assume small angles of oscillations, show that the linear form of the equations of motion 
can be expressed as: (1.5 points) 
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4- Through a static analysis without any forcing, determine the equilibrium points (rs, θs) of 
the linearized system. (2 points) 

5- Determine the natural frequencies of the linearized system. (2 points) 
 

 
Figure 4 
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Formula Sheet  

 

 Point P is fixed with the body 

⃑
= 0 , where: 

⃑
= (𝜔  𝛸 𝑟) 

 P is moving w.r.t the body 

𝑑𝑟

𝑑𝑡
=

𝑑𝑜�⃑�

𝑑𝑡
+ (𝜔  𝛸 𝑟) 

 Translating & Rotating frame 

𝑅 + 𝑒 = 𝑟 

𝑉 ⃑ = 𝑉 ⃑ +
𝑑𝑝

𝑑𝑡
+(𝜔  𝛸 𝑒) 

 5-part acceleration formula 

𝑎 ⃑ = 𝑎 ⃑ +
𝑑

𝑑𝑡

𝑑𝑒

𝑑𝑡
+(𝜔  𝛸 𝑒)   

𝑎 ⃑ = 𝑎 ⃑ + 𝑎 ⃑ + 2𝜔  𝛸 𝑉 + 𝜔  𝛸 𝜔  𝛸 𝑒 + 𝛼 𝛸𝑒  

 Newton’s 2nd Law 

�⃑� = 𝑚�⃑� 

 Conservation of Energy  

𝐸 = 𝑇 + 𝑉   ;   𝐸(𝑡 = 𝑡 ) = 𝐸(𝑡 = 𝑡 ) 

𝑑

𝑑𝑡
(𝐸) = 0 

 Conservation of Angular Momentum 

𝐻⃑ = 𝑚𝑟𝛸 �̇� 

𝐻⃑̇ = 𝑚𝑟𝛸 �̈� = 𝑀⃑ 



𝐻⃑ = 𝜎 𝛸𝑚�̇�  

𝐻⃑̇ = 𝑀⃑ + 𝑚 𝑟⃑̈𝛸𝜎  

 D’Alembert’s Principle 

∑ 𝑓 ⃑ − 𝑚 �̈� • 𝐵 ⃑ = 0      For j=1,2,…,n  

 where 𝐵 ⃑ =
⃑
 

 Euler-Lagrange 

𝐿 = 𝑇 − 𝑉 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇
−

𝜕𝐿

𝜕𝑞
= 𝑄  
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Formula Sheet  

 Euler-Lagrange equations: 

L = T – V 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�
−  

𝜕𝐿

𝜕𝑥
=  𝑄 ,  

 SDOF spring-mass-damper system: free vibration 

�̈� +  2𝜉𝜔 �̇� + 𝜔  𝑥 = 0 

𝜔 =   and   =  2𝜉𝜔  

- Undamped free vibration (𝜉 = 0) 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔 𝑡) + 𝐵𝑠𝑖𝑛(𝜔 𝑡) 

- Damped free vibration (𝜉 ≠ 0)  

Overdamped case:  𝜉 > 1 

𝜆  𝑎𝑛𝑑 𝜆   𝑎𝑟𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑟𝑒𝑎𝑙 

𝑥(𝑡) = 𝐴𝑒 + 𝐵𝑒  

 

Critically-damped case:  𝜉 = 1 

𝜆  𝑎𝑛𝑑 𝜆   𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 (𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑜𝑜𝑡) 

𝑥(𝑡) = (𝐴 + 𝐵𝑡)𝑒  

Underdamped case:  0 <  𝜉 < 1 

𝜆  𝑎𝑛𝑑 𝜆   𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒𝑠 

𝑥(𝑡) = 𝑒 [𝐴𝑐𝑜𝑠(𝜔 𝑡) + 𝐵𝑠𝑖𝑛(𝜔 𝑡)] =  𝑋𝑒 𝑠𝑖𝑛(𝜔 𝑡 + 𝜙) 
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where 𝑋 =  𝑥 +  
( )^  

   ;     𝜙 = 𝑡𝑎𝑛 ; 𝜔 = 𝜔 1 − 𝜉 =  

 Logarithmic decrement 

𝛿 = ln =  ; 𝜉 =  

 Linearization 

cos(𝜃) ≈ 1 and sin(𝜃) ≈  𝜃 

 𝐅𝐨𝐫𝐜𝐞𝐝 𝐞𝐱𝐜𝐢𝐭𝐚𝐭𝐢𝐨𝐧s 
- EoM 

�̈� + 2𝜉𝜔 �̇� + 𝜔 𝑥 = 𝐹 cos(𝜔𝑡) 

- Particular solution (general form) 

𝑥 = 𝑋 cos(𝜔𝑡) + 𝑋 sin(𝜔𝑡) = 𝑋 sin(𝜔𝑡 + 𝜙) 

where 

𝑋 =
( )

( ) ( )
 and 𝑋 =

( )

( ) ( )
 

𝑋 = 𝑋 + 𝑋      and     𝜙 = 𝑡𝑎𝑛 
𝑋

𝑋
= 𝑡𝑎𝑛

𝜔 − 𝜔

2𝜉𝜔 𝜔
 

- Amplitude of oscillations 

𝑋

Δ
=

1

(1 − 𝑟 ) + (2𝜉𝑟)
 where 𝑟 =

𝜔

𝜔
   and  Δ =  

𝐹

𝑘
 

- Resonant frequency and amplitude 

𝑟 = = 1 − 2𝜉  and =  

- Quality factor 

𝑄 =
∆

=  
∆

       and      𝑄 ≈    for small 𝜉 

where 𝑓  =  



1 
 

Formula Sheet  

 𝜔 =    

    =  2𝜉𝜔  

 𝑓 =   

1- 𝐅𝐨𝐫𝐜𝐞𝐝 𝐞𝐱𝐜𝐢𝐭𝐚𝐭𝐢𝐨𝐧s 
- EoM 

�̈� + 2𝜉𝜔 �̇� + 𝜔 𝑥 = 𝐹 cos(𝜔𝑡) 

- Particular solution (general form) 

𝑥 = 𝑋 cos(𝜔𝑡) + 𝑋 sin(𝜔𝑡) = 𝑋 sin(𝜔𝑡 + 𝜙) 

where 

𝑋 =
( )

( ) ( )
 and 𝑋 =

( )

( ) ( )
 

𝑋 = 𝑋 + 𝑋 =  𝑋 =
𝐹

(𝜔 − 𝜔 ) + (2𝜉𝜔 𝜔)
and  

𝜙 = 𝑡𝑎𝑛 
𝑋

𝑋
=  𝑡𝑎𝑛

𝜔 − 𝜔

2𝜉𝜔 𝜔
 

- Amplitude of oscillations 

𝑋

Δ
=

1

(1 − 𝑟 ) + (2𝜉𝑟)
 𝑤ℎ𝑒𝑟𝑒 𝑟 =

𝜔

𝜔
   𝑎𝑛𝑑  Δ =  

𝐹

𝑘
 𝑎𝑛𝑑 𝐹 =  

𝐹

𝑀
  

- Resonant frequency and amplitude 

𝑟 = 1 − 2𝜉  and =    and   𝜔 = 𝜔 1 − 2𝜉  

- Beating phenomenon (𝜉 = 0 ⟹ 𝜔 = 𝜔 ) 

sin 𝛼 +
𝜋

2
= cos(𝛼) 

cos(𝛼) − cos(𝛽) = −2 sin
𝛼 + 𝛽

2
sin

𝛼 − 𝛽

2
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𝟐 −  𝐁𝐚𝐬𝐞 𝐞𝐱𝐜𝐢𝐭𝐚𝐭𝐢𝐨𝐧𝐬 

 EoM 

�̈� + 2𝜉𝜔 (�̇� − �̇�) + 𝜔 (𝑥 − 𝑦) = 0 

 𝐹 = 𝑌𝜔  
 Particular solution (general form) 

𝑧(𝑡) = 𝑥(𝑡) − 𝑦(𝑡) 

𝑧(𝑡) = 𝑍 cos(𝜔𝑡) + 𝑍 sin(𝜔𝑡) = 𝑍 sin(𝜔𝑡 + 𝛹) 

where 

=
 

( ) ( )
, =

( ) ( )
 , and  =

( ) ( )
 

𝛹 = 𝑡𝑎𝑛
𝜔 − 𝜔

2𝜉𝜔 𝜔
 

 Amplitude of oscillations 

𝑋 =
( )

( ) ( )
𝑌  

 Resonant frequency 

𝑟 =  

 

𝟑 −  𝐑𝐨𝐭𝐚𝐭𝐢𝐧𝐠 𝐮𝐧𝐛𝐚𝐥𝐚𝐧𝐜𝐞 

 EoM 

�̈� + 2𝜉𝜔 �̇� + 𝜔 𝑥 =
𝑚

𝑀
𝑒𝜔 sin(𝜔𝑡) 

 𝐹 = =  

 
 Centrifugal force 

𝐹 = 𝑚
𝑣

𝑟
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 Amplitude of oscillations 

𝑋 =
( ) ( )

=  
( ) ( )

=  
( ) ( )

  

𝜓 = 𝑡𝑎𝑛
2𝜉𝜔 𝜔

𝜔𝑛
2 − 𝜔2

= tan
2𝜉𝑟

1 − 𝑟2
 

 Resonant frequency and amplitude 

𝑟 = =  and =  

 



Formula sheet 

1. Equations of Motion 

[𝑀]{�̈�} + [𝐾]{𝑥} = {𝐹(𝑡)} 

 Euler-Lagrange equations of a system having 𝑞 , 𝑞 … … . . 𝑞  as degrees of freedom 
(L=T-V) 

𝑑(
𝜕𝐿
𝜕𝑞̇

)

𝑑𝑡
−

𝜕𝐿

𝜕𝑞
= 𝑄  

 Law of Cosines 

𝑎 = 𝑏 + 𝑐 − 2𝑏𝑐 ∗ cos (𝐴) 
 

2. Eigenvalue Problem (Free vibrations) 

{𝑥(𝑡)} = {𝑋}𝑒  

 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝐸𝑉𝑃 𝑖𝑛𝑡𝑜 𝐸𝑜𝑀 
 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝜔  𝑎𝑛𝑑 𝜔  (𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠) 
 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑋  𝑎𝑛𝑑 𝑋  (𝑎𝑙𝑤𝑎𝑦𝑠 𝑠𝑒𝑡 𝑋 = 1) 𝑡𝑜 𝑓𝑖𝑛𝑑 𝑀𝑜𝑑𝑎𝑙 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 

 

 

3. General Solution/Normal Mode Vibrations 

𝑥 (𝑡)

𝑥 (𝑡)
= (𝐴 cos 𝜔 𝑡 + 𝐵 sin 𝜔 𝑡)

𝑋

𝑋
+ (𝐶 cos 𝜔 𝑡 + 𝐷 sin 𝜔 𝑡)

𝑋

𝑋
 

\ 

4. Forced vibrations 

 

[𝑀]
�̈�
�̈�

+ [𝐾]
𝑥

𝑥
=

𝐴 cos(Ω𝑡 + 𝑝ℎ𝑖)

𝐵 cos(Ω𝑡 + 𝑝ℎ𝑖)
 

 In complex form:  

[𝑀]
�̈�
�̈�

+ [𝐾]
𝑥

𝑥
=

𝐴𝑒 ( )

𝐵𝑒 ( )
 

 Steady-state solutions (X1, X2) 

 = cos(Ω𝑡 + 𝑝ℎ𝑖)  

 



𝑥

𝑥
= 𝑒 ( )

𝑋

𝑋
 

�̈�
�̈�

= −Ω 𝑒 ( )
𝑋

𝑋
 

(−Ω [𝑀] + [𝐾])
𝑋

𝑋
𝑒 ( ) =

𝐴

𝐵
𝑒 ( ) 

(−Ω [𝑀] + [𝐾])
𝑋

𝑋
=

𝐴

𝐵
 

[𝐴0]
𝑋

𝑋
=

𝐴

𝐵
 

𝑋

𝑋
=

𝑎 𝑏
𝑐 𝑑

𝐴

𝐵
 

 ( )
( )

= cos(Ω𝑡 + 𝑝ℎ𝑖)  

 Inverse of a matrix  

𝑎 𝑏
𝑐 𝑑

=
1

ad − bc
𝑑 −𝑏

−𝑐 𝑎
 

 


