Qualifying Exam 2022

Select three problems

Dynamics

e Problem 1: (10 points)
Two particles with mass m are attached by a linear spring with a spring constant k and
unstretched length 27y, as shown in Figure 1. Assume that the system dynamics stays in a plane.
There is no net external force on the system, so you can use the center of mass of the system is
the origin of an inertial frame.

Figure 1

The goal is to obtain the possible motions of the system. Although not obvious at first, this
system’s dynamics can be reduced to a single ordinary differential equation.

1- Determine the second-order differential equations of motion whose solution would give
r(t) and 6(¢) as functions of time; but do not solve them.

(a) Using Lagrange’s principle (2.5 points)
(b) Using Newton’s law (2.5 points)

2- Assume that the initial angular velocity is @y, the initial radial velocity is 74, and the
initial separation 2ry is the same as the unstretched length of the spring, determine an
expression that relates 6 and r and the initial conditions. (2 points)

3- Using the conservation of energy, find a single scalar expression relating - and » of the
form (3 points)

Fr=f(r)



e Problem 2: (10 points)
As shown in Figure 2, particles 1 and 2, each of mass m, are connected by a rigid massless rod of

length /. Particle 1 can slide without friction along the floor while particle 2 can slide without
friction on the wall. The dumbbell starts from rest with a lean angle 6=5° and falls under the
influence of gravity.

(a) For what value of the angle 8 will the dumbbell lose contact with the wall? (2 points)

(Hint: start with two generalized coordinates, x and 6, where x is the distance from the wall to
particle 2, but impose constraint x = ())

(b) For all that follows, consider the situation after the dumbbell loses contact with the wall (i.e.,
x>(0). Find the 2nd-order equations of motion for x and é. (3 points)

(c) Use the Routhian procedure to find a 2nd-order equation of motion for just the angle 6. (2
points)

(d) Using constants of motion and initial conditions, find a 1st-order equation of motion of the
form: (3 points)

0=1(6)
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Vibrations
e Problem 3: (10 points)
A machine of mass M rests on a massless elastic floor, which is hinged at the wall, as shown in

Figure 3(a). A shaker having total mass m, and carrying two rotating unbalanced masses

produces a vertical harmonic force mlw’ sin wt , where the frequency of rotation may be varied.
The floor is made of steel (Young’s modulus, £=200GPa) with the cross-section of 5#=40cm
wide, /=2cm thick, and L=4m long; the total mass of the machine and shaker is M.,=100kg; and
the forcing magnitude is S00N when the operational speed of the shaker is at 300 rpm.

In the equivalent/simplified spring-damper-mass system (see Figure 3(b)), the equivalent mass

48E1 bh3
— [=_, al’ld Meq =ms +M.

(M.y) and stiffness (Ke,) are, respectively, equal to: Ke,= ERELEET)

1- Using Figure 3(b), determine the equation of motion using Newton’s second law and the
natural frequency. (2 points)

2- For an undamped system (c=0), what is the resulting steady-state amplitude of the
machine-shaker setup due to rotating unbalance? (2 points)

3- For a damped system, the resonant amplitude of the system is X,=3.41cm, determine the
damping coefficient c of this system. (3 points)

4- Suppose an additional component is rigidly attached to the machine. This component
adds an additional mass of 25kg. Determine the particular solution amplitude of
oscillation for the undamped system with this additional mass. (3 points)

m\; I F sin(wt)
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e Problem 4: (10 points)
Considering / as the free length of the spring with a stiffness k&, demonstrate that the
equations of motion of a spring-pendulum system shown in Figure 4 can be expressed as:
(3 points)

mi'—m(l+7)0 +kr —mgcos(6)=0

()11

[+7)0 +2i0 + gsin(0) =—-2
(I+7r)0+270+ gsin >

Determine the coupling terms and show their types (linear or nonlinear). Please justify. (1.5
points)

Assume small angles of oscillations, show that the linear form of the equations of motion
can be expressed as: (1.5 points)

[y A R A o

Through a static analysis without any forcing, determine the equilibrium points (75, 65) of
the linearized system. (2 points)
Determine the natural frequencies of the linearized system. (2 points)

Figure 4



Formula Sheet

e Point P is fixed with the body

=N

B
LB = 0, where: % = (6(3) X7)

dt

N

e P is moving w.r.t the body
"’ dop> A
T dr +(w(%)Xr)
e Translating & Rotating frame
R+é=7
_B
(7), = (77), + & +@z x 0
e 5-part acceleration formula

=B
e

?)N = (?)N + %(% +(5( | X é))

?)N = (a?), + (oTB)N + (25(%) X (Vp)B) + (5(%) X (5(%) X é)> + (a(%)X§>

e Newton’s 2™ Law

Zﬁ=m&

e Conservation of Energy

E=T+V ; E(t=t,)=E({t=t,)

Hy=mrXr
Hy=mrXr =M,



N
H, = Z 0, Xmo,
i=1

N
H, =M, + Z m;1,Xo,
i=1

e D’Alembert’s Principle

?:1(]3 - mi'ﬁ) . BT, =0 Forj=1,2,...

= 0N
where B, = a_ql
J

e Euler-Lagrange

L=T-V
d (6L> oL
dc\ag,) " aq,  Inet
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Formula Sheet

e FEuler-Lagrange equations:

L=T-V
d (6L) aL _
dt \ox dx  nex

e SDOF spring-mass-damper system: free vibration

¥+ 28w,x + w2 x =0

w, = \/%and% = 28w,

- Undamped free vibration (¢ = 0)
x(t) = Acos(w,t) + Bsin(w,t)
- Damped free vibration (¢ # 0)
Overdamped case: § > 1
A and A, are negative and real
x(t) = AeMt + Bett

b Vb — dac
A 2a

—_—
= _f‘:"—’n + m?n|.¢2 1

Critically-damped case: & =1
A, and A, are equal (Repeated root)
x(t) = (A + Bt)e Wnt
Underdamped case: 0 < £ <1

A and A, are complex conjugates

x(t) = e~ $“nt[Acos(wyt) + Bsin(wyt)] = Xe $“ntsin(wyt + @)



where X = \/xg 4 Wotdwnxo)™2

- XoWd 21
C gmtan () gy = 0, T =
szi ’ d) vo+Ewnxo/’ d n 5 tg
e Logarithmic decrement
1 X
§=—"In(2)
n—1 Xn
e Linearization

cos(f) ~ 1 and sin(0) =~ 6

e Forced excitations
-  EoM

¥+ 28w, x + wy%x = F, cos(wt)

1 Fcosfw
Particular solution (general form)

‘ M | i
Xp = Xq cos(wt) + X, sin(wt) = X sin(wt + ¢)

where

— [
—_— C
- | !:I
(wn?-w?)F, _ (2§ wnw)Fy
= o=+ (gonay? N X2 =

(wn?-w?)2+2{wnpw)?

— 2 2 _ -1 X
X = le + X, and ¢ =tan (

2 2
1 -1 Wy —w
— | =tan™" | ———
XZ) < 28w, w )
- Amplitude of oscillations

s (T

\/(1 —12)2 4+ (2¢6r)?

X1

herer = and A, = -
Werer—wn and A = -

Resonant frequency and amplitude

_ W _ Y X1
Tpeak = o = J1—2&%and WY N e

- Quality factor
w f
Q=—= ﬁ and Q

1
~ for small &
where f, = ?



Formula Sheet

k
* o=
c
* T Hon
w
* =

1- Forced excitations

- EoM
1 Fcosiwi

¥+ 28 wpx + wy?x = Fy cos(wt)

‘ | X
- Particular solution (general form) M

xp = X; cos(wt) + X, sin(wt) = X sin(wt + ¢)

-r::_:
where f!

2_,,2
Xl _ (wn“—w)F andXz —

T (0n2-0?)2+ (28 wnw)?

2 2 Fo
X = Xl +X2 = X = and
V(w2 = 0?)? + QEwyw)?

X w2 — w?
¢ = tan 71 (—1> = tan~! <—" >
X, 2¢wpw

- Amplitude of oscillations

(2§ wnpw)Fy
(wn?-w?)2+2Ewpw)?

X ( ! ) h © and A, = — and Fy = ~
_— = wnerer = — an = —an = —
A \J(A =122 + (2&1)2 Wy, Tk ° M

- Resonant frequency and amplitude

Xr 1 _
rpeak :\/1 —262 andA_st_ZE\/sz and Wy = a)m;l —262

- Beating phenomenon (§{ = 0 = w, = wy,)

sin (oc + %) = cos(a)

cos(a) — cos(B) = —2 sin <a ; ﬁ) sin (a ; ﬁ)



2 — Base excitations
e FEoM
i+ 28w, (X — ) + w2 (x =) =0

e F,=Yw?

e Particular solution (general form)

Is
m

k C

I Yeosfwi)

z(t) = x(t) — y(t)
z(t) = Z; cos(wt) + Z, sin(wt) = Z sin(wt + ¥)
where

Zy _ (1-7r2) r? Zy _ 28r3 z r?

Y  (1-72)2+Q2En2 Y (1-12)2+(28r)2° and Y J-r2)2+(28r)?

lI] — tan_l M
2¢wpw

e Amplitude of oscillations

_ J1+(28&r)2
—Ja-r)ze(28r)?

e Resonant frequency

JViF8EE-1

T, =
peak 28

3 — Rotating unbalance .

e EoM

B A R S

. . 2 m 2 .
X+ 28wpX + wpx = 7 €e sin(wt)

F  me 2 -
Y FO = —_— =
M M
. X
e Centrifugal force 2
v? 7 A

Fcentrifugal = m?



e Amplitude of oscillations

2 me w? Fo

me r

X =

M JA-22+(2Er)? | M [(@0i-0D)2+2i0nw)2 | (0i-0D)2+(2Ewnw)?

[ 2éw,w [ 2¢ér
Y =tan 1(W>=tan 1(1—7'2)

e Resonant frequency and amplitude

wr 1 MX, 1

T = on  Jiae and me 2t



Formula sheet
1. Equations of Motion
[M]{x} + [K]{x} = {F(©)}

Euler-Lagrange equations of a system having qy, g5 -.. ... .. qp as degrees of freedom

(L=T-)

oL
Gq) o _

dt aqi—'Qnd

Law of Cosines

a? = b% + ¢? — 2bc * cos(A)

2. Eigenvalue Problem (Free vibrations)

{x(®} = {X}e/*

Substitute EVP into EoM
Solve for w; and w, (natural frequencies)
Solve for X; and X, (always set X; = 1) to find Modal Vectors

3. General Solution/Normal Mode Vibrations

<x1 ®)

X X
xz(t)) = (Acosw,t + Bsinw,t) (Xl) + (C cos w,t + D sin w,t) (Xl)

27 w=w1 27 w=w2

4. Forced vibrations

on(5) 10 (3) - G 120

e In complex form:
i j(Qt+phi)
Xq x1\ _ (Ae]
[M] (xz) + [K] <x2> = (Be j(mphi))
e Steady-state solutions (X}, X2)
. (2) = cos(Qt + phi) (2)



(xl) _ ¢J(@t+phi) (Xl)
X2 Xz

(x1) _ _(2e)@t+phi) (Xl)
X, X,

X ) ) A\ . .
(_QZ [M] + [K]) (X1> o) (Qt+phi) — (B) o) (Qt+phi)

2

o+ 0 () - ()

201 () = (5)
()= 27 (5)

x1(0)\ _ N (X
(X;(t)) = cos(Qt + phi) (X;)
e Inverse of a matrix

-1 1 _
[Ccl Z] :ad—bc [—dc ab]



