Fall 2019 Qualifying Exam - Conduction Heat Transfer (Q1) - Closed Book
Transient Temperature Distribution in a Thin Slab
A very large (in Y and Z directions) thin slab is used inside the wall of a building. It is made of a porous material and has a thickness of 2 cm (in the X direction). It is initially at $40^{\circ} \mathrm{C}$ on a hot day. Suddenly, the temperatures of both the large surfaces are reduced to $30^{\circ} \mathrm{C}$ for all $t>0$ where t is the time in seconds. Develop an analytical expression for the transient temperature distribution $T(x, t)$ in the porous slab. Assume the effective density of the slab is $850 \mathrm{~kg} / \mathrm{m}^{3}$ and the effective specific heat is $1900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$.

Equations

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{x}}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+q=\rho \cdot c_{p} \frac{\partial T}{\partial t} \\
& \frac{\partial^{2} x}{\partial x^{2}}+\lambda^{2} x=0 ; \text { solution: } X(x)= A \cos (\lambda x) \\
&+B \sin (\lambda x) \\
& \frac{\partial^{2} x}{\partial x^{2}}-\lambda^{2} x=0 ; \text { solution: } x(x)=A e^{-\lambda x}+B e^{\lambda x} \\
& \frac{\partial x}{\partial t}+c \lambda^{2} x=0 ; \text { solution: } x(t)=D e^{-c \lambda^{2} t} \\
& \sin ^{2}(x)= \frac{1-\cos (2 x)}{2}
\end{aligned}
$$

Fall 2019 Qualifying Exam - Radiation Heat Transfer (Q2) - Closed Book

Real Body Radiation

Two parallel plates 0.5 m X 1 m are spaced 0.5 m apart. One plate is maintained at $1000^{\circ} \mathrm{C}$ and the other at $500^{\circ} \mathrm{C}$. The plates have emissivities of 0.2 and 0.5 respectively and are located in a very large room whose walls are at $27^{\circ} \mathrm{C}$. The surfaces of the plates that are facing each other (surfaces 1 and 2) are exchanging heat between them and the room (surface 3). The backsides of the plates are thoroughly insulated. Find the net heat transfer rate to each plate and to the room.

Fall 2019 Qualifying Exam - Thermodynamics (Q3) - Closed Book

Gas Mixtures

(a) A mixture of $60 \% \mathrm{~N}_{2}, 30 \% \mathrm{Ar}$ and $10 \% \mathrm{O}_{2}$ on a mass basis is in a cylinder at $250 \mathrm{kPa}, 310 \mathrm{~K}$ and volume $0.5 \mathrm{~m}^{3}$. Find the mole and the mass fractions and the mass of argon.
(b) A slightly oxygenated air mixture is $69 \% \mathrm{~N}_{2}, 1 \% \mathrm{Ar}$ and $30 \% \mathrm{O}_{2}$ on a mole basis. Assume a total pressure of 101 kPa and find the mass fraction of oxygen and its partial pressure.

$$
\begin{array}{rr}
\mathrm{mf}_{i}=\frac{m_{i}}{m_{m}} \text { and } y_{i}=\frac{N_{i}}{N_{m}} & M_{m}=\frac{m_{m}}{N_{m}}=\sum_{i=1}^{k} y_{i} M_{i} \text { and } R_{m}=\frac{R_{u}}{M_{m}} \\
m_{m}=\sum_{i=1}^{k} m_{i} \text { and } N_{m}=\sum_{i=1}^{k} N_{i} & \mathrm{mf}_{i}=y_{i} \frac{M_{i}}{M_{m}} \text { and } M_{m}=\frac{1}{\sum_{i=1}^{k} \frac{\mathrm{mf}_{i}}{M_{i}}} \\
\frac{P_{i}}{P_{m}}=\frac{V_{i}}{V_{m}}=\frac{N_{i}}{N_{m}}=y_{i} & \mathrm{R}_{\mathrm{m}}=\Sigma \mathrm{c}_{\mathrm{i}} \cdot \mathrm{R}_{\mathrm{i}} \quad P V=R T \quad R_{u}=8.31447 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K}
\end{array}
$$

Molar mass, gas constant, and critical-point properties			
Substance	Formula	Molar mass, $M \mathrm{~kg} / \mathrm{kmol}$	Gas constant, $R \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}^{*}$
Air	-	28.97	0.2870
Ammonia	NH_{3}	17.03	0.4882
Argon	Ar	39.948	0.2081
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.115	0.1064
Bromine	Br_{2}	159.808	0.0520
n-Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	0.1430
Carbon dioxide	CO_{2}	44.01	0.1889
Carbon monoxide	CO	28.011	0.2968
Carbon tetrachloride	CCl_{4}	153.82	0.05405
Chlorine	Cl_{2}	70.906	0.1173
Chloroform	CHCl_{3}	119.38	0.06964
Dichlorodifluoromethane (R-12)	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	120.91	0.06876
Dichlorofluoromethane (R-21)	$\mathrm{CHCl}_{2} \mathrm{~F}$	102.92	0.08078
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	30.070	0.2765
Ethyl alcohol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	46.07	0.1805
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.054	0.2964
Helium	He	4.003	2.0769
n-Hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	86.179	0.09647
Hydrogen (normal)	H_{2}	2.016	4.1240
Krypton	Kr	83.80	0.09921
Methane	CH_{4}	16.043	0.5182
Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$	32.042	0.2595
Methyl chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	50.488	0.1647
Neon	Ne	20.183	0.4119
Nitrogen	N_{2}	28.013	0.2968
Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$	44.013	0.1889
Oxygen	O_{2}	31.999	0.2598
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	44.097	0.1885
Propylene	$\mathrm{C}_{3} \mathrm{H}_{6}$	42.081	0.1976
Sulfur dioxide	SO_{2}	64.063	0.1298
Tetrafluoroethane (R-134a)	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{~F}$	102.03	0.08149
Trichlorofluoromethane (R-11)	$\mathrm{CCl}_{3} \mathrm{~F}$	137.37	0.06052
Water	$\mathrm{H}_{2} \mathrm{O}$	18.015	0.4615
Xenon	Xe	131.30	0.06332

Fall 2019 Qualifying Exam - Convection Heat Transfer (Q4) - Closed Book

Laminar Flow through a Pipe

"Slug" flow in a pipe may be described as that flow in which the velocity is constant across the entire flow area of the tube, i.e., $u=u_{0}$ (constant). Obtain an expression for the heat-transfer coefficient and the Nusselt number in this type of flow with a constant-heat-flux condition maintained at the wall.

Equations

$\alpha \cdot \frac{1}{r} \cdot \frac{\partial}{\partial \gamma}\left(\gamma \cdot \frac{\partial T}{\partial \gamma}\right)=u \cdot \frac{\partial T}{\partial z}$

$$
\begin{aligned}
& T_{m}: \text { Bulk Mean Temperature } \\
& \text { or } \\
& \text { Mixing } c_{u p} \text { Temperature } \\
& T_{m}= \frac{\oiint \rho \cdot c_{p} \cdot u \cdot T \cdot d A}{\oiint \rho \cdot c_{p} \cdot u \cdot d A} \\
& h= \frac{-k \cdot(\partial T / \partial r)_{r=R}}{T_{w}-T_{m}} \\
& \overline{N u}_{D}= \frac{\bar{h} \cdot D}{k}
\end{aligned}
$$

