Qualifying Exam 2019
 Select three problems

Dynamics

- Problem 1: (10 points)

Particles 1 and 2, each of mass m, are connected by a rigid massless rod of length l, as shown in Figure 1. Particle 1 can slide without friction along the floor while particle 2 can slide without friction on the wall. The dumbbell starts from rest with a lean angle $\theta=5^{\circ}$ and falls under the influence of gravity.
1- For what value of the angle θ will the dumbbell lose contact with the wall? (2 points)
(Hint: start with two generalized coordinates, x and θ, where x is the distance from the wall to particle 2, but impose constraint $x=0$)
2- For all that follows, consider the situation after the dumbbell loses contact with the wall (i.e., $\mathrm{x}>0$). Find the 2 nd-order equations of motion for x and θ. (3 points)
(c) Use the Routhian procedure to find a 2 nd-order equation of motion for just the angle θ. (2 points)
(d) Using constants of motion and initial conditions, find a 1st-order equation of motion of the form: (3 points)

$$
\dot{\theta}=f(\theta)
$$

Figure 1

- Problem 2: (10 points)

Two masses, m_{l} and m_{2}, are connected by an inextensible string: m_{l} moves on the horizontal table, while m_{2} hangs suspended by the string below the table. The string passes through a hole in the center of the table, as shown in Figure 2. You may assume that m_{2} moves only in the vertical direction, and that neither m_{l} nor m_{2} pass through the hole.

1- Determine the expression of the total energy of this dynamical system (2 points)
2- Assume $\dot{r}(t=0)=0$ and apply the conservation of energy, determine a single scalar expression relating $\dot{r}, \dot{\theta}$, and r of the form: (3 points)

$$
\dot{r}^{2}=f(r, \dot{\theta})
$$

where r is the distance from the hole to m_{l}. It should be mentioned that there will be constants in the function f related to physical constants and initial conditions.

3- Use the angular momentum to reduce the previous single scalar expression from $\dot{r}^{2}=$ $f(r, \dot{\theta})$ to $\dot{\boldsymbol{r}}^{2}=f(r)$ (3 points)
4- Using the conservation of energy method, demonstrate that this dynamical system is governed by the following equation of motion: (2 points)
$2 \ddot{r}-\frac{r_{0}^{4} \dot{\theta}_{0}^{2}}{r^{3}}+g=0$

Figure 2

Vibrations

- Problem 3: (10 points)

The 2-DOF automobile model as shown in Figure 3 is considered. The mass of the automobile is M and the moment of inertia with respect of the center of mass is $J_{o}=M r^{2}$.

1- Using Newton's second law and considering small oscillations, demonstrate that the general form of the equations of motion of the system can be expressed as: (2 points)

$$
\left\{\begin{array}{l}
\ddot{x} \\
\ddot{\theta}
\end{array}\right\}+\left[\begin{array}{cc}
\frac{2 k_{1}+k_{2}}{M} & \frac{k_{2} l_{2}-2 k_{1} l_{1}}{M} \\
\frac{k_{2} l_{2}-2 k_{1} l_{1}}{J_{0}} & \frac{k_{2} l_{2}^{2}+2 k_{1} l_{1}^{2}}{J_{0}}
\end{array}\right]\left\{\begin{array}{l}
x \\
\theta
\end{array}\right\}=\left\{\begin{array}{c}
\frac{F(t)}{M} \\
\frac{T(t)}{J_{0}}
\end{array}\right\}
$$

2- Why the stiffness matrix is not symmetric? (0.5 points)
3- Assume the parameters of this dynamical system are $M=350 \mathrm{Kg}, k_{1}=1000 \mathrm{~N} / \mathrm{m}, k_{2}=2400$ $\mathrm{N} / \mathrm{m}, l_{1}=1 \mathrm{~m}, l_{2}=2 \mathrm{~m}$, and $r=1 \mathrm{~m}$ (the radius of gyration about cg).
(a) Determine the natural frequencies and corresponding mode shapes and depict the mode shapes. (2 points)
(b) Check the orthogonality of modes and then determine the normal mode vibrations of the system when the initial conditions are $x(0)=1, \theta(0)=-1$, and zero initial velocities. (1.5 points)

4- Consider the general form of the equations of motion as presented in question 1 and assume that $F(t)=2 F_{0} \cos (\Omega t)$ and $T(t)=T_{0} \cos (\Omega t)$:
(a) Determine the moment of inertia J_{o} that renders the displacement of the car stationary (i.e., $x(t)=0)$. $(2$ points $)$
(b) Determine the corresponding steady-state amplitude of the rotation. (2 points)

Figure 3

- Problem 4: (10 points)

1- Considering l as the free length of the spring with a stiffness k, demonstrate that the equations of motion of a spring-pendulum system shown in Figure 4 can be expressed as: (3 points)

$$
\begin{aligned}
& m \ddot{r}-m(l+r) \dot{\theta}^{2}+k r-m g \cos (\theta)=0 \\
& (l+r) \ddot{\theta}+2 \dot{r} \dot{\theta}+g \sin (\theta)=\frac{T(t)}{m l}
\end{aligned}
$$

2- Determine the coupling terms and show their types (linear or nonlinear). Please justify. (1.5 points)
3- Assume small angles of oscillations, show that the linear form of the equations of motion can be expressed as: (1.5 points)

$$
\left[\begin{array}{cc}
m & 0 \\
0 & m l^{2}
\end{array}\right]\left\{\begin{array}{l}
\ddot{r} \\
\ddot{\theta}
\end{array}\right\}+\left[\begin{array}{cc}
k & 0 \\
0 & m g l
\end{array}\right]\left\{\begin{array}{l}
r \\
\theta
\end{array}\right\}=\left\{\begin{array}{c}
m g \\
T(t)
\end{array}\right\}
$$

4- Through a static analysis without any forcing, determine the equilibrium points (r_{s}, θ_{s}) of the system. (2 points)
5- Determine the natural frequencies of the system. (2 points)

Figure 4

Formula Sheet

(QE 2019)

- Point P is fixed with the body
$\frac{d \overline{o p}^{B}}{d t}=0$, where: $\frac{d \vec{r}^{N}}{d t}=\left(\vec{\omega}_{\left(\frac{B}{N}\right)} X \vec{r}\right)$
- P is moving w.r.t the body

$$
\frac{d \vec{r}^{N}}{d t}=\frac{d \overrightarrow{o p}^{B}}{d t}+\left(\stackrel{\rightharpoonup}{\omega}_{\left(\frac{B}{N}\right)} X \vec{r}\right)
$$

- Translating \& Rotating frame
$\vec{R}+\vec{e}=\vec{r}$
$\left(\stackrel{\rightharpoonup}{V^{P}}\right)_{N}=\left(\stackrel{\rightharpoonup}{V^{B}}\right)_{N}+\frac{d \vec{p}^{B}}{d t}+\left(\stackrel{\rightharpoonup}{\omega}_{\left(\frac{B}{N}\right)} X \vec{e}\right)$
- 5-part acceleration formula
$\left(\stackrel{\rightharpoonup}{a^{P}}\right)_{N}=\left(\stackrel{\rightharpoonup}{a^{B}}\right)_{N}+\frac{d^{N}}{d t}\left(\frac{d \vec{e}^{B}}{d t}+\left(\stackrel{\rightharpoonup}{\omega}_{\left(\frac{B}{N}\right)} X \vec{e}\right)\right)$
$\left(\stackrel{\rightharpoonup}{a^{P}}\right)_{N}=\left(\stackrel{\rightharpoonup}{a^{p}}\right)_{B}+\left(\overrightarrow{a^{B}}\right)_{N}+\left(2 \stackrel{\rightharpoonup}{\omega}_{\left(\frac{B}{N}\right)} X\left(\vec{V}_{p}\right)_{B}\right)+\left(\stackrel{\rightharpoonup}{\omega}_{\left(\frac{B}{N}\right)} X\left(\stackrel{\rightharpoonup}{\omega}_{\left(\frac{B}{N}\right)} X \vec{e}\right)\right)+\left(\alpha_{\left(\frac{B}{N}\right)} X \vec{e}\right)$
- Newton's $2^{\text {nd }}$ Law
$\sum \vec{F}=m \vec{a}$
- Conservation of Energy
$E=T+V ; E\left(t=t_{1}\right)=E\left(t=t_{2}\right)$
$\frac{d}{d t}(E)=0$
- Conservation of Angular Momentum
$\overrightarrow{H_{o}}=m \vec{r} X \dot{\vec{r}}$
$\dot{\overrightarrow{H_{o}}}=m \vec{r} X \ddot{\vec{r}}=\overrightarrow{M_{o}}$
$\overrightarrow{H_{p}}=\sum_{i=1}^{N} \overrightarrow{\sigma_{l}} X m \dot{\overrightarrow{\sigma_{l}}}$
$\dot{\overrightarrow{H_{p}}}=\overrightarrow{M_{p}}+\sum_{i=1}^{N} m_{i} \ddot{\overrightarrow{r_{p}}} X \overline{\sigma_{l}}$
- D'Alembert's Principle
$\sum_{i=1}^{N}\left(\overrightarrow{F_{l a}}-m_{i} \ddot{\overrightarrow{r_{l}}}\right) \cdot \overrightarrow{B_{l \jmath}}=0 \quad$ For $\mathrm{j}=1,2, \ldots, \mathrm{n}$
where $\overrightarrow{B_{l j}}=\frac{\partial \vec{r}_{L_{l}}}{\partial q_{j}}$
- Euler-Lagrange
$L=T-V$
$\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{l}}\right)-\frac{\partial L}{\partial q_{i}}=Q_{n c-i}$

Formula sheet - Final -

- Constrained Vision of Lagrange's equations:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=\underbrace{Q_{n c_{i} i}}_{\text {Nunconssvalie }}+\underbrace{C_{i}}_{i} \rightarrow \text { conshaint }
$$

Kinetic and Conservative forces.
forces.

$$
\rightarrow C_{i}=\sum_{j=1}^{m} \lambda_{j a_{j i} / i} / j=\{1, \ldots . n\}
$$

where $a_{j i}=\frac{\partial \phi_{j}}{\partial q_{i}}$
λ_{j} : Lagrange muittipliess.
m : number of constraints.
n : number of generalized coordinates.
$n-m$: number of degrees of freedom.

$$
\rightarrow C_{i}=\sum_{k=1}^{N} f_{c k} \cdot \overrightarrow{\beta_{k i}} / \dot{j}=\{1, \ldots n\}
$$

$$
-Q_{n c-i}=\sum_{k=1}^{N} \stackrel{\rightharpoonup}{f_{k_{a}}} \cdot \stackrel{\rightharpoonup}{B_{k i}}
$$

$$
\underset{\rightarrow}{\leftrightarrow} \text { appliedfacces. }
$$

$$
\overrightarrow{\beta_{k i}}=\frac{\partial \overrightarrow{r_{k}}}{\partial q i}=\frac{\frac{\partial \stackrel{\rightharpoonup}{r_{k}}}{\partial \dot{q} i}}{}
$$

* Constraints
\rightarrow Holonomic: Constraints are function of portion $\phi_{j}(9)=0 \quad / j=1, \ldots m$
\rightarrow Non-holonomic: Constraints cannot be put into above form.

Most of ter can be bet in linearnon-talenomic form:

$$
\sum_{i=1}^{n} a_{j i}(q) \dot{q}_{i}=0 / j=1, \ldots(m)
$$

C_{D} find $a_{j i}$?
Routs method
CD for handling "Ignorable coordinates".
$\frac{\partial L}{\partial \Phi}=0 \Rightarrow \phi_{i s}$ an ignorable coordinate $\partial \Phi_{0}$ gmontiled

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \phi}\right)-\frac{\partial L^{0}}{\partial \phi}=Q_{n c-\phi}
$$

in case $\varphi_{n c}-\phi=0$

$$
L_{\Delta} \frac{d}{d t}\left(\frac{\partial L}{\partial \phi}\right)=0 \Rightarrow \frac{\partial L}{\partial \ddot{\phi}}=\text { constat }=\beta_{\phi}
$$

* Constant the Rorthian function R :

$$
R=L(\theta, \dot{\theta}, \dot{\phi})-\beta_{\phi}^{\phi} \phi
$$

\rightarrow Roth equation:

$$
\frac{d}{d t}\left(\frac{\partial R}{\partial \dot{\theta}}\right)-\frac{\partial R}{\partial \theta}=0
$$

looks like lagrange's equation with $L \rightarrow R$

Formula Sheet

- $\omega_{n}=\sqrt{\frac{k}{m}}$
- $\frac{c}{m}=2 \xi \omega_{n}$
- $f_{n}=\frac{\omega_{n}}{2 \pi}$

1- Forced excitations

- EoM
$\ddot{x}+2 \xi \omega_{n} \dot{x}+\omega_{n}{ }^{2} x=F_{0} \cos (\omega t)$
- Particular solution (general form)
$x_{p}=X_{1} \cos (\omega t)+X_{2} \sin (\omega t)=X \sin (\omega t+\phi)$
where

$X_{1}=\frac{\left(\omega_{n}^{2}-\omega^{2}\right) F_{0}}{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega_{n} \omega\right)^{2}}$ and $X_{2}=\frac{\left(2 \xi \omega_{n} \omega\right) F_{0}}{\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\left(2 \xi \omega_{n} \omega\right)^{2}}$
$X=\sqrt{X_{1}{ }^{2}+X_{2}}{ }^{2}$ and $\phi=\tan ^{-1}\left(\frac{X_{1}}{X_{2}}\right)$
- Amplitude of oscillations
$\frac{X}{\Delta_{s t}}=\left(\frac{1}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}}\right)$ where $r=\frac{\omega}{\omega_{n}}$ and $\Delta_{s t}=\frac{F}{k}$ and $F_{0}=\frac{F}{M}$
- Resonant frequency and amplitude
$r_{p e a k}=\sqrt{1-2 \xi^{2}}$ and $\frac{X_{r}}{\Delta_{s t}}=\frac{1}{2 \xi \sqrt{1-\xi^{2}}}$

2 - Base excitations

- EoM
$\ddot{x}+2 \xi \omega_{n}(\dot{x}-\dot{y})+\omega_{n}{ }^{2}(x-y)=0$
- $F_{0}=Y \omega^{2}$
- Particular solution (general form)

$z(t)=x(t)-y(t)$
$z(t)=Z_{1} \cos (\omega t)+Z_{2} \sin (\omega t)=Z \sin (\omega t+\Psi)$
where
$\frac{Z_{1}}{Y}=\frac{\left(1-r^{2}\right)+(2 \xi r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}$ and $\frac{Z_{2}}{Y}=\frac{2 \xi r^{3}}{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}$
- Amplitude of oscillations
$X=\frac{\sqrt{1+(2 \xi r)^{2}}}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}} Y$
- Resonant frequency
$r_{\text {peak }}=\frac{\sqrt{\sqrt{1+8 \xi^{2}}-1}}{2 \xi}$

3 - Rotating unbalance

- EoM
$\ddot{x}+2 \xi \omega_{n} \dot{x}+\omega_{n}{ }^{2} x=\frac{m}{M} e \omega^{2} \sin (\omega t)$
- $F_{0}=\frac{F}{M}=\frac{m e \omega^{2}}{M}$
- Centrifugal force
$F_{\text {centrifugal }}=m \frac{v^{2}}{r}$
- Amplitude of oscillations
$X=\frac{m e}{M} \frac{r^{2}}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}}$
- Resonant frequency and amplitude
$r_{p}=\frac{\omega_{r}}{\omega_{n}}=\frac{1}{\sqrt{1-2 \xi^{2}}}$ and $\frac{M X_{r}}{m e}=\frac{1}{2 \xi \sqrt{1-\xi^{2}}}$

Formula sheet

1. Equations of Motion

$$
[M]\{\ddot{x}\}+[K]\{x\}=\{F(t)\}
$$

- Euler-Lagrange equations of a system having $q_{1}, q_{2} \ldots \ldots . q_{n}$ as degrees of freedom ($L=T-V$)

$$
\frac{d\left(\frac{\partial L}{\partial \dot{q}_{l}}\right)}{d t}-\frac{\partial L}{\partial q_{i}}=Q_{n c i}
$$

- Law of Cosines

$$
a^{2}=b^{2}+c^{2}-2 b c * \cos (A)
$$

2. Eigenvalue Problem (Free vibrations)

$$
\{x(t)\}=\{X\} e^{j \omega t}
$$

- Substitute EVP into EoM
- Solve for ω_{1} and ω_{2} (natural frequencies)
- Solve for X_{1} and X_{2} (always set $X_{1}=1$) to find Modal Vectors

3. Orthogonality/Orthogonal transformation (Free vibrations)

- Check for orthogonality

$$
\begin{gathered}
{[\phi]=\left\{\text { Modal Vector }_{\omega=\omega 1}, \text { Modal Vector }_{\omega=\omega 2}\right\}} \\
{[\phi]^{T}[M][\phi]=\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]} \\
M_{11}=\{X\}_{1}^{T}[M]\{X\}_{1} \\
M_{12}=\{X\}_{1}^{T}[M]\{X\}_{2}=0 \\
M_{21}=\{X\}_{2}^{T}[M]\{X\}_{1}=0 \\
M_{22}=\{X\}_{2}^{T}[M]\{X\}_{2} \\
{[\phi]^{T}[K][\phi]=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]} \\
K_{11}=\{X\}_{1}^{T}[K]\{X\}_{1} \\
K_{12}=\{X\}_{1}^{T}[K]\{X\}_{2}=0 \\
K_{21}=\{X\}_{2}^{T}[K]\{X\}_{1}=0 \\
K_{22}=\{X\}_{2}^{T}[K]\{X\}_{2}
\end{gathered}
$$

- Orthogonal transformation:

$$
\begin{aligned}
& \{x(t)\}=[\Phi]\{y(t)\} \\
& M_{11} \ddot{y}_{1}+K_{11} y_{1}=0 \\
& M_{22} \ddot{y}_{2}+K_{22} y_{2}=0
\end{aligned}
$$

4. General Solution/Normal Mode Vibrations

$$
\binom{x_{1}(t)}{x_{2}(t)}=\left(A \cos \omega_{1} t+B \sin \omega_{1} t\right)\binom{X_{1}}{X_{2}}_{\omega=\omega 1}+\left(C \cos \omega_{2} t+D \sin \omega_{2} t\right)\binom{X_{1}}{X_{2}}_{\omega=\omega 2}
$$

5. Absorber (forced vibrations)

$$
[M]\binom{\ddot{x}_{1}}{\ddot{x}_{2}}+[K]\binom{x_{1}}{x_{2}}=\binom{A \cos \Omega t}{B \cos \Omega t}
$$

- In complex form:

$$
[M]\binom{\ddot{x}_{1}}{\ddot{x}_{2}}+[K]\binom{x_{1}}{x_{2}}=\binom{A e^{j \Omega t}}{B e^{j \Omega t}}
$$

- Steady-state solutions (X_{1}, X_{2})

$$
\binom{x_{1}}{x_{2}}=e^{j \Omega t}\binom{X_{1}}{X_{2}}
$$

- Inverse of a matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{\mathrm{ad}-\mathrm{bc}}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

