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Fluid Mechanics Problems for Qualifying Exam
(Fall 2014)

1. Consider a steady, incompressible boundary layer with thickness, d(z), that de-
velops on a flat plate with leading edge at = 0. Based on a control volume analysis
for the dashed box, answer the following:

a) Provide an expression for the mass flux i based on p, V., and 4.
b) Provide an expression for the wall shear stress, 7, based on p, V., u and §.

c¢) Consider a linear velocity profile, u(y). Provide an expression for 7, as a function
of p, Vs and dd/dx.

d) The expression from (c) by definition equals 7, = pdu/dy at y = 0. Provide
an expression for 6(x) based on Re, = pVoox/p and x.

e) Provide the skin friction coefficient, ¢; = as a function of Re,.
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f) Based on the boundary layer shape, do you expect the skin friction coefficient
for the Blasius boundary layer to be larger or smaller than your answer from (e)?
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2. Consider a uniform flow with velocity U in the positive x direction combined
with two free vortices of equal strength located along the y-axis. Let one vortex
located at y = a be a clockwise vortex (¢ = K Inr) and the other at y = —a be a
counterclockwise vortex. where K is a positive constant. It an be shown by plotting
streamlines that for Ua/K < 2 the streamline 1) = 0 forms a closed contour, as shown
in the figure below. Thus, this combination can be used to represent flow around a
family of bodies called Kelvin ovals. For the case of U = 10 m/s, a = 1 m, if the
body has half-hight H = 1.5 m: a) calculate the value of K; b) for the same Kelvin
oval, calculate its maximum width along x.
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3. Consider the steady, viscous, axisymmetric flow of two co-flowing fluids of
viscosities 117 and uo along the axis of a pipe of circular cross-section, as shown in the
figure. The densities of both fluids are constant and equal and the fluids are driven

by the same constant presuure gradient.

(i) Making the parallel flow assumption, obtain the velocity distribution of this
flow

(ii) From your answer to (i), evaluate the velocity along the center line of the pipe

r —»
J;.X o, ‘
I




4. A viscous liquid steadily exits a circular vertical pipe (with inner diameter =
D) with a parabolic velocity distribution (see figure). After the fluid exits the tube,
viscous forces smooth the velocity profile to a uniform value. This happens in a very
short distance from the exit, so that gravity force is negligible. Using control volume
analysis (equations given below), find the diameter of the jet when the uniform flow
is first established.
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Fluid Mechanics --- Fall 2013
(solve only 3 of 4 problems!!)

1. When an incompressible jet strikes an inclined fixed plate at speed V;, as shown below,
it breaks into two jets at 2 and 3 of equal velocity V' = V; but unequal fluxes a@) at section
2 and (1 — a)Q at section 3, a being a fraction and @ being the total volume flowrate.
The reason is that for frictionless flow the fluid can exert NO tangential force F} on the
plate. The condition F; = 0 enables us to solve for a. Perform this analysis and find « as

a function of the plate angle 6.
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Equation sheet for problem 2:

Continuity equation for coordinate (X, y, z):

Jap
ot

d d d
+ v) +—(pv,) + —(pv,) =0
v (pv,) P (pv,) . (pv,)
Momentum equation for coordinate (X, y, z):

Jdu, v, Jau, Jau, ) d d d
p( Vs + v 2+ U_v 2+ V. "> = <—~ Tx + — T_\'.\' + — T:,\') - —B + PEx

ot Y oox dy ¢ 0z dx ady 9z ox

v, 4 v, " av, " v, d N 9 N d ap .

— Uy v, — . ] T Ao Ty oo Ty oo Ty ) T oo y
P\ ar Y oox Ay ¢ 9z ax Y9y Y 0z ¢ dy P

X

Jv. Ju. Ju. Ju. J Jd Jd ap
p——“+v_'—”+v\,—*+v_—= = —’r_._+7—7,_+—7__>——1+pg:
t T oox Ty © 0z x ’



2. Consider a film consisting of two immiscible liquids, each of constant density
and viscosity, flowing down an inclined plane, as shown in the figure. The flow is 2D,
steady and parallel. Assume constant atmospheric pressure acts on the free surface
of the top liquid.

(a) Write down all the boundary conditions for this flow

(b) Obtain expressions for the velocity fields v, and vy in the two liquids.
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3. For the 2D, steady boundary layer developed when a fluid of density p and
freestream speed Uy, flows over a flat plate (with zero pressure gradient), show how
to obtain the following equation

d [?
T = Pp— u (U — u) dy,
d:&': 0 ( oo ) y,
where 7, is the wall shear stress, u is the z-component of velocity and § is the
boundary layer thickness. Here, x denotes distance from the leading edge measured
parallel to the plate and y is distance perpendicular to the plate.



4. Consider the tank and disk flow system shown in the figure below. Flow discharges to air
through the thin gap between the two disks. Water in the tank is pressurized. Gauge fluid is also
water. All dimensions are shown in the figure. Neglect water level change in the tank and the
viscous effect.
Find: (a) (3points) Air pressure in region 1

(b) (3 points) Flow speed exiting the edge of the disks

(c) (4 points) Pressure distribution inside the disks: p(r)

Solution:

(a) pl=ywaterh=2.94 kPa (g)

(b) Consider a streamline from water surface in the tank to the exit at the edge of the disk, as
shown in the figure. Bernoulli’s equation can be used:

pl+12pV12+yz1=p2+12pV22+yz2
Because the water level change in the tank can be neglected, thus VI1=0 =
12pV22=(pl1-p2)+y(z1-z2)=pg(/1+H)
> V2=2g(/1+H)=5.04m/s

(c) Because the flow is incompressible, the flow rate across any cylindrical surface with
radius r can be written as Q=2zréV{(r)=2xR6V2=> V(r)=RrV2

Along the streamline, the Bernoulli’s equation is:
pl+yzl=p(r)+12pV2(r)+yz2
> p(r)=pl+y(z1-22)-12pV2(r)=pg(/1+H)-12pV22 R2r2=y(/+H)(1-R2r2) (gauge)

The pressure is negative, which means the pressure force intend to make the two disks
closer to each other.



Fluid Mechanics Qualifying Exam
Study Material

The candidate is expected to have a thorough understanding of undergraduate engineering fluid
mechanics topics. These topics are listed below for clarification. Not all instructors cover
exactly the same material during a course, thus it is important for the candidate to closely
examine the subject areas listed below. The textbooks listed below are a good source for the
review and study of a majority of the listed topics. One final note, the example problems made
available to the candidates are from past exams and do not cover all subject material. These
problems are not to be used as the only source of study material. The topics listed below should
be your guide for what you are responsible for knowing.

Suggested textbook:

Introduction to Fluid Mechanics, 4t Ed., Robert W. Fox and Alan T. McDonald, (John
Wiley & Sons, pub.)

Fluid Mechanics, 3" Ed., Frank M. White, (McGraw Hill, pub.)

Fluid Flow, 4t Ed., Rolf Sabersky, Allan Acosta, Edward Hauptmann, and E.M. Gates,
(Prentice Hall, pub.)

Fundamentals of Fluid Mechanics, 4h Ed., Bruce R. Munson, Donald F. Young, and
Theodore H. Okiishi, (John Wiley & Sons, pub.)

Topic areas:

1.

Fluid properties
a. Viscosity
b. Compressibility
c. Surface tension
d. Ideal Gas Law

Fluid statics
a. Hydrostatic pressure
b. Forces and moments on solid surfaces
c. Manometers

Kinematics of fluid motion
a. Streamlines, pathlines, and streaklines
b. Local, convective and total derivative

c. Stream function and vorticity
d. Eulerian and Lagrangian descriptions
e. System and control volume

Bernoulli’s Equation
a. For steady, inviscid and incompressible flows
b. Extension to other cases

Conservation laws in both differential and integral form
a. Continuity
b. Momentum (Navier-Stokes equations)
c. Energy

Simplified forms and their limitations
a. Euler’s equation



b. Laplace’s equation

7. Similitude
a. Buckingham Pi Theorem
b. Dimensional analysis
c. Application to correction and modeling

8. 2-D potential flow theory
a. Definition of potential flow
b. Linear superposition
c. Basic potential flow elements

9. Fully developed pipe and duct flow
a. Laminar and turbulent flow solution methods
b. Moody diagram

10. External flow
a. Boundary layer approximations, displacement and momentum thickness
b. Boundary layer equations, differential and integral
c. Flat plate solution
d. Lift and drag over bodies and use of lift and drag coefficients

11. Basic 1-D compressible fluid flow
a. Speed of sound
b. Isentropic flow in duct of variable area
c. Normal shock waves
d. Use of tables to solve problems in above areas

12. Non-dimensional numbers, their meaning and use
a. Reynolds number
b. Mach number

c. FEuler number
d. Froude number
e. Prandtl number
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The graph below depicts the drag coefficient for a sphere as a function of Reynolds number. A
similar relationship is obtained for a very long cylinder in cross flow. Please discuss the various

regions as to the flow phenomena taking place. In particular, explain the sudden decrease in drag
observed around Re = 300,000

5 c
GRAAL T,

| G NG



Name Spring 2009

Qualifying Exam: Fluid Mechanics

CLOSED BOOK

_ =

2. Aflow satisfies the following two conditions: V-V =0 and VxV =0

a. What does each of these equations represent?

b. Given a 2-D flow described by the potential function

Kk cos(6)
d)(r, 9) = %

r

Determine if the above conditions are satisfied. You may use the following equations:

x =rsin(@) y =rcos(h)

- 0 a .0
V= ia +j@ + k& which is the "del" operator
i 7k
-~ - o 0d 0
UxV=|[—- — =
dx Jdy o0z
GV
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3. Aflat plate of length L and height § is placed at a wall and is parallel to an approaching wall
boundary layer, as shown in the figure below. Assume that there is no flow in the y direction and
thatin any plane y = constant, the boundary layer that develops over the plate is the Blasius
solution for a flat plate. If the approaching wall boundary has a velocity profile approximated by:

2

uly) =U [sin(% F

Find an expression for the drag force on the plate. Recall the transformation of variables in the
Blasius problem:

N =

U, ,
n= <2vx> z and u=U.f'(n)

Where U, is the velocity at the edge of the boundary layer and z is the coordinate normal to the
plate. Further, f"(0) = 0.4696.

y=0 — -

u(y)

\
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4. The momentum and energy equations, in tensor notation, for the Raleigh-Benard problem are as
follows:
Ju; Ju; 10dp
—tui—=—————g[1 = B(T — Ty]6;3 + vV?u;,
ot U; ax,- 0 0x; [ B( 0)]6i3 + vV,
aT aT

With i,j = 1, 2, 3 corresponding to the x, y, and z directions, respectively, and §;3 is the Kronecker
delta. The variables are the velocity components, u;, the pressure, p, the temperature, T. The
different parameters in the equations are: a, the coefficient of thermal diffusivity, §, the coefficient
of thermal expansion, v, the coefficient of kinematic viscosity, and p,, a reference density. These
equations apply to the fluid trapped between two parallel rigid walls maintained at fixed
temperatures, T, (lower wall) and T; (upper wall, with Ty > T;, see figure below. Assume that the
fluid extends to infinity in the x and y directions. These equations are of course coupled with the
continuity equations for incompressible flows.

a. Assuming that the base state is one in which the fluid is at rest and the flow steady
everywhere, find the temperature and pressure distributions, T(z) and p(2),
respectively, in the base state (since wall pressures are not specified, you can leave any
constants of integration in the pressure distribution as they are.)

b. Write down the linearized disturbance equations.

(Note: You are not required to know anything about the Raleigh-Benard problem to be able
to answer these questions.)
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This portion of the qualifying exam is closed book. You may have a calculator.

Work 3 of the 4 problems. Be very clear which 3 you want graded (see below). It is not acceptable to
work all 4 problems and hope that the graders pick out the best worked three.

I want problems # JH# ,and # graded.

Be sure to put your name on all papers handed in, including this cover sheet.

1. Discuss the requirements for accurate fluid mechanical testing of models, such as models of
aircraft and cars. What are the requirements? What are the practical limitations? Use
dimensionless parameters to help explain. Be sure to identify what these dimensionless
parameters represent.

2. The continuity and momentum equations for 2-D flow for a cylindrical coordinate system are:

Ju 10(rv) 0

ax ' r or
6u+v6(ur)_ 16p+19 o’u 10 ( au)
Yox Ty ar T p 0x ax2 " ror\ or

ov  vo(vr) 10p 0%v 10 / ov
2B T ()
0x?  ror

uax+r or  por rar

where u and v are velocity components in x and r directions, respectively. Simplify the
above equations to obtain the momentum equation for hydrodynamically fully developed
flow in a circular tube. Use the resulting equation and appropriate boundary condition to
obtain velocity distribution for hydrodynamically fully developed flow in a circular tube. Find
mean velocity u,, and express the velocity distribution in form u(r)/u,, = f(r).
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3. Air at standard conditions flows past a smooth flat plate at 20 m/s, as shown below. A pitot
stagnation tube with its center placed 2 mm above the plate develops a water manometer
head of h = 21 mm.

a. Estimate the flow speed parallel to the plate at the location of the tube.
b. Assuming a laminar flat plate boundary layer, estimate the x position of the tube.

‘ X
k
Note:  pgi = 1.16 %
2
Oair = 15.9 X 1076 7=
k.
Pwater = 1000 %

2
Owater = 0.855 x 1076 =~
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4. You are to use an integral control volume analysis to dete4drmine the laminar boundary layer
thickness 6 as a function of x. Consider the flow over a smooth flat plate of a Newtonian
fluid, with no pressure gradient in the flow direction. As the solution is approximate, the
choice of boundary layer velocity profile is somewhat open. The main physics, however,
can be captured with even a crude choice such as

ulx,y) =u 0<y<4, uU=u,fory>$

A
T 6(x)
Use this simple profile. The properties viscosity, u, and density, p, are to be taken as
constant.

The steady-state control volume equations for x and y momentum can be written as:

E, = Fgy + Fg, =f upV - dA
cs

Fy=F5y+FBy=j vpV-d/T
CcS

Here S and B designate surface and body forces. CS is the control surface, while u and

v are the x and y components of the velocity vector, V.

U,

Uy
—»
- T
> Boundary Layer

—————» X

The fluid may be assumed incompressible: [ .V - dA
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This portion of the qualifying exam is closed book. You may have a calculator.

Work 3 of the 4 problems. Be very clear which 3 you want graded (see below). It
is not acceptable to work all 4 problems and hope that the graders pick out the best
worked three.

I want problems # , , and # graded.

Be sure to put your name on all papers handed in, including this cover sheet.
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1. Consider a Bingham plastic of density p draining from a reservoir through a two-dimensional
channel (see figure below).

A Bingham plastic is a non-Newtonian fluid with the stress-strain relation

a A
Tij :TO+ @(—I'FK for |T|Z Ty-
j i

For |z'| < 7, the fluid behaves like a rigid body (# — «). Assume that x and p are constant, that
the reservoir is large, and that 7, is small enough that the fluid does flow.

a. Use a global force balance to find the shear stress on the channel walls (assume
pressure at the exit is equal to the ambient pressure).

b. Find the strain-rate at the channel walls.

c. Use the strain-rate (in addition to “no slip”) as a wall boundary condition to find the
velocity profile in the channel. Be sure to specify the point away from the wall where
the fluid begins to behave as a rigid body.

2. Draw one or more free body diagrams showing all the aero and hydrodynamic forces that
control the movement of a sail boat when the sail boat is sailing 90 degrees to the direction of
the wind. Discuss how these forces affect the motion of the sail boat.
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Calculate the total kinetic energy of an Oseen vortex

and a Taylor vortex

Is the Taylor vortex a solution of the incompressible Navier-Stokes equations? Explain.

Consider the pipe setup in the figure below. The flow at 1 is fully developed and exits to
atmosphere at 2. A venturi is placed halfway between 1 and 2. There is a small tube that rises
vertically from the throat of the venturi. You are to determine the minimum height, h, of this
tube such that no water exits out the top of it. You may use the following approximations: L
>> ¢ and the venturi may be treated as frictionless. The pipe wall itself is smooth.

Use the following values and the additional sheets provided.

D=4cm,d=2cm,L=50m, p=1000 kg/m?’, P, =120 kPa, P, = P, = 100 kPa

0.3164
Rep?5

g=9.81m/s’ u=0.001 N-s/m°. Youmayuse f = for Rep, < 10°.
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Fig. 8.11 Exponent for power-law profile. {Adapted from [3])

The power-law profile is not applicable close to the wall (y/R <0.04): the profile
pives infinite velocity gradient at the wall. Although the profile fits the data close
the centerline, it fails to give zero slope at the centerline. The variation of exponent
n in the power-law profile with Reynolds number (based on pipe diameter, D, and
centerline velocity, U/) is shown in Fig. 8.11.

Since the average velocity is V = 0/A, and

Q:Ltﬁ-dﬁ.

the ratio of the average velocity to the centerline velocity may be calculated for the
power-law profiles of Eq. 8.22. The result is

v 2n?

—_= (8.23
U (n+1)2n+1) ; }

From Eq. 8.23, we see that as n increases (due to increasing Reynolds num-
ber) the ratio of the average velocity to the centerline velocity increases; with in-
creasing Reynolds number the velocity profile becomes more blunt or “fuller” (for
n=6,V/U=0.79 for n =10, V/U =0.87). As a representative value, 7 often i
used for the exponent; this gives rise to the term “a one-seventh power profile” for
fully developed turbulent flow.

Velocity profiles for n = 6 and n = 10 are shown in Fig. 8.12. The parabolic profile
for fully developed laminar flow has been included for comparison. It is clear that
the turbulent profile has a much steeper slope near the wall.

3-6 ENERGY CONSIDERATIONS IN PIPE FLOW

Thus far in our discussion of viscous flow, we have derived all results by applying
the momentum equation for a control volume. We have, of course, also used the
control volume formulation of conservation of mass. Nothing has been said about
conservation of energy—the first law of thermodynamics. Additional insight into the
nature of the pressure losses in internal viscous flows can be obtained from the energy
equation. Consider, for example, steady flow through the piping system, including
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Fig. 8.12 Velocity profiles for fully developed pipe
flow.

Cl=

a reducing elbow, shown in Fig. 8.13. The control volume boundaries are shown as
dashed lines. They are normal to the flow at sections (1) and (@) and coincide with
the inside pipe wall elsewhere.

Basic equation:

=0(1) =0(2) =0(1)  =0(3)

: E A
0 7{ —/v(h —/Jm - Cﬂf cp dVr| (et pupldd  @5)
Cv 5
1l

Assumptions: (1)

(2)

(3)
(4)
(5)

e=+—+ypgr
2 g

I"i"{i =10, Ii"i;"'rnl:MJ'u:r =0

Wehear =0 (although shear stresses are present at the walls of
the elbow, the velocities are zero at the walls)

Steady flow

Incompressible flow

Internal energy and pressure uniform across sections (1) and(@)

Under these assumptions the energy equation reduces to

Fig. 8.13 Confrol volume and coordinates for energy

analysis of flow through a 90° reducing slbow.
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Q=ﬁ1{uz—ul}+ﬁt(%— %)‘th(zz"z]]

% vz
¢ L Sevediy—| o da, (8.24)

L

Note that we have not assumed the velocity to be uniform at sections (1) and @), since
we know for viscous flows the velocity at a section cannot be uniform. However, it
is convenient to introduce the average velocity into Eq. 8.24 so that we can eliminate
the integrals. To do this, we define a kinetic energy coefficient.

8-6.1 Kinetic Energy Coefficient

The kinetic energy coefficient, «, is defined such that

Vﬁ ]:-'2 ; f.—'Z
L ?plf" dA—aL TPV dﬁl—ﬂm? (8.25a)
or
pV3dA
g Amq}'r (8.25b)

For laminar flow in a pipe (velocity profile given by Eq. 8.12), a =2.0.

In turbulent pipe flow, the velocity profile is quite flat, as shown in Fig, 8.12. We
can use Eq. 8.25b together with Eqs. 8.22 and 8.23 to determine c. Substituting
the power-law velocity profile of Eq. 8.22 into Eq. 8.25b, we obtain

vy 242

“"[E}{3+nﬁ3+zm (8.20)
The value of V/U is determined from Eq. 8.23. Forn =6,a =1.08; forn =10, a =
1.03. Since the exponent, n, in the power-law profile is a function of Reynolds
number, a also varies with Reynolds number Because o is reasonably close to
one for large Reynolds number, unity often is assumed for pipe flow calculations.
However, for developing flows at moderate Reynolds numbers the change of kinetic
energy may be significant.

8-6.2 Head Loss
Using the definition of «, the energy equation {Eq. 8.24) can be written

: P2 V3 vi
0 =mius - ut_h+n':r(% - %l)+mg{zg—:l}+rﬁ(ﬂ‘2 2 —al_g.t)

Dividing by the mass rate of flow gives
50 P2 P, Vi oy Vi

— = Uz— U+

dm i p 2 2
Rearranging this equation, we write
= g

P Ve oo X FHE V. o e o 08 2
(?+-(I[?+g;,|) (F+ﬂ27+-’3‘1 = {2 — ) ﬁ (E,.J}

-
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In Eq. 8.27, the term

b W
) (P_f-l-ﬂ 3 +gz)

represents the mechanical em‘:ré}f per unit mass at a cross section. The term wy —
u,—86(/dm 15 equal to the difference in mechanical energy per unit mass between
sections (1) and (2). It represents the (irreversible) conversion of mechanical energy
at section (1) to unwanted thermal energy (u; — u;) and loss of energy via heat
transfer (—8Q/dm). We identify this group of terms as the total head loss, hy,.
Then

g f’% Pz ‘}% -
(F- +H|E+EZ|)_(F+&1?+§’ZQ —h;r (8.28)

Head loss has dimensions of energy per unit mass [FL/M]; this is equivalent to
dimensions of [L%/r%].

If the flow were assumed frictionless, the velocity at a section would be uniform
{; = a2 = 1) and Bernoulli’s equation would predict zero head loss.

In incompressible frictionless flow, a change in internal energy can occur only
through heat transfer; there is no conversion of mechanical energy (p/p + V22 +
gz) to internal energy. For viscous flow in a pip-élz, one effect of friction may be to
increase the internal energy of the flow, as shown|by Eq. 8.27.

You might wonder why the energy loss, h; , is called a “head” loss. As the
empirical science of hydraulics developed during the nineteenth century, it was com-
mon practice to express the energy balance in terms of energy per unit weight of
flowing liquid (e.g., water) rather than energy per unil mass, as in Eq. 8.28. To
obtain dimensions of energy per unit weight, we divide each term in Eq. 8.28 by the
acceleration of gravity, g. Then the net dimensions of h;, are [(L%/¢*)(¢*/L)] =[L],
or feet of flowing liquid. Since the term head loss is in common use, we shall also
use it here. Remember that its physical interpretation is a loss in mechanical energy
per unit mass of Aowing fluid.

Equation 8.28 can be used to calculate the pressure difference between any two
points in a piping system, provided the head loss, h;,, can be determined. We shall
consider calculation of &, in the next section.

8-7 CALCULATION OF HEAD LOSS

Total head loss, hy £ is regarded as the sum of major losses, h;, due to frictional
effects in fully developed flow in constant-area tubes, and minor losses, h;_. due
to entrances, fittings, area changes, and so0 on. Consequently, we consider the major
and minor losses separately.

8-7.1 Major Losses: Friction Factor

The energy balance, expressed by Eq. 8.28, can be used to evaluate the major
head loss. For fully developed flow through a constant-area pipe, h; =0, and
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al(f"%ﬁ} =ag{f’%f2]‘, Eq. 8.28 reduces to

%:3{32—31}+h; (8.29)
If the pipe is horizontal, then 72 = z; and
- A
S A (8.30)
P P

Thus the major head loss can be expressed as the pressure loss for fully developed
flow through a horizontal pipe of constant area.

Since head loss represents the energy converted by frictional effects from me-
chanical to thermal energy, head loss for fully developed flow in a constant-area
duct depends only on the details of the flow through the duct. Head loss is indepen-
dent of pipe orientation.

a. Laminar Flow

In laminar flow, the pressure drop may be computed analytically for fully developed
flow in a horizontal pipe. Thus, from Eq. 8.13¢c,

128uLQ  128ulV(mDY/4) LV
= = S - il
Ap wD* 7D* ED D
Substituting in Eq. 8.30 gives
LuV LV m 64\ L V1
h=32—-—C = 64a-L == | == 8.31
"= oD Dl(pﬁn) (Reﬂz tau

(We shall see the reason for writing A; in this form shortly.)

b. Turbulent flow

In turbulent flow we cannot evaluate the pressure drop analytically; we must resort
to experimental results and uvse dimensional analysis to correlate the experimental
data. In fully developed turbulent flow, the pressure drop, Ap, due to friction in a
horizontal constant-area pipe is known to depend on pipe diameter, D, pipe length,
L, pipe roughness, e, average flow velocity, V', fluid density, p, and fluid viscosity,
e, In functional form
Ap=Ap(D, L, e, V.,p, p)

We applied dimensional analysis to this problem in Example Problem 7.2. The results
were a correlation of the form

S (L.
pi2 pVD DD

We recognize that u/pVD = 1/ Re, so we could just as well write

Ap L e
a7 =¢(% 55)

Substituting from Eq. 8.30, we see that
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Although dimensional analysis predicts the functional relationship, we must obtain
actual values experimentally.
Experiments show that the nondimepsional head loss is directly proportional to
L/D. Hence we can write
iy ¢ £
_ _ﬁbl EJ

- gl

Since the function, ¢y, is still undetermined, it is pennissihie to introduce a corn-
stant into the left side of the above equation. The number 1 is introduced into the
denominator such that the head loss is nondimensionalized on the kinetic energy per
unit mass of flow. Then

I} e h
f=d |.R€’- 5}
and
Lv?
f!,l - fﬁ ? {332}

The friction factor’ is determined experimentally. The results, published by L. E
Moody [6], are shown in Fig. 8.14.

To determine head loss for fully developed flow with known conditions, the
Reynolds number is evaluated first. Relative roughness, ¢/D, is obtained from Fig.
8.15. Then the friction factor, f, is read from the appropriate curve in Fig. 8.14, at
the known values of Re and ¢/D. Finally, head loss is found using Eq. 8.32.

Several features of Fig. 8.14 require some discussion. The friction factor for
laminar flow may be obtained by comparing Egs. 8.31 and §.32

o (S\L T LT

L HL-,JL" 2 ~'D72

Consequently, for laminar flow
: 64 -
_.'rl:||11|n.1r = E fS.JJ:I

Thus, in laminar flow, the friction factor is a function of Reynolds number only; it
is independent of roughness. Although we took no notice of roughness in denving
Eq. 8.31, experimental results verify that the friction factor is a function only of
Reynolds number in laminar flow.

The Reynolds number in a pipe may be changed most easily by varying the average
flow velocity. If the flow in a pipe is originally laminar, increasing the velocity un-
til the critical Reynolds number is reached causes transition to oceur; the laminar flow

" The friction factor defined by Eq. 8.32 is the Darcy friction factor. The Fanning friction factor, less
frequantly used, is defined in Problem 8.74.



Name Spring 2007

Qualifying Exam: Fluid Mechanics

CLOSED BOOK

This portion of the qualifying exam is closed book. You may have a calculator.

Work 3 of the 4 problems. Be very clear which 3 you want graded (see below). It
is not acceptable to work all 4 problems and hope that the graders pick out the best
worked three.

I want problems # , , and # graded.

Be sure to put your name on all papers handed in, including this cover sheet.

1. Consider the incompressible flow of a fluid of viscosity i down an inclined plane, as shown
in the figure below. Assume that the flow is steady, one-dimensional (i.e. the only non-zero
component of velocity is along the x-axis) and the atmosphere exerts constant pressure and
negligible shear on the free surface. Derive and expression for u(y). (Note: the figure is a
cartoon, ignore the ‘waves’ you see on the surface).

Fieure 1
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Qualifying Exam: Fluid Mechanics

CLOSED BOOK

2. Air at standard conditions flows past a smooth flat plate, as in the Figure below. A pitot
stagnation tube, placed 2 mm from the wall, develops a water manometer head h = 21 mm.

a. Estimate the flow speed parallel to the plate at the location of the tube.

b. Assuming a laminar flat plate boundary layer, estimate the position X of the tube.

Fioure 2o

————
——

Pt Boundary layer
20mis -7
— . —_— N
’,’ 2 mm
.«’
|“ X |

1. Navi

81!,1‘ ('-}l‘b!,j ﬁp 2 .
Tt = 2R v, i=1,2,3
p(ﬁf, +u38:r:_,-) 5:1:.,--'_“ w

2. Continuity equation for Incompressible Flows
du;
dui _
83:1-

3. Bernoulli's Equation

1 ., .
Pt pV* + pgz = constant along a streamline

=

4. Constitutive relation for Newlonian fiuids

OQu;  Ou, )

+

= —p0; +
T Pl u(@:rj 5.1'5
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CLOSED BOOK

Consider steady incompressible flow between two concentric cylinders
shown below. with radii a and b, respectively. Liquid of constant kinematic
viscosity v fills the gap between the cyliners. The inner cylinder (radius a)
rotates at a constant angular rate (V/a) and the outer cylinder (radius b) is
fixed in space,

Liquid seeps through the inner cylinder radially at a constant velocity
U; fluid also seeps radially through the outer cylinder. ASSUME that flow
parameters only depend on the radial distance v measured from the center
of eylinder a.

7

(a) Show that the radial velocity component in the entire gap region is given

by
all

Up =
-

(b) Write down the governing equation for vg. the tangential velocity com-
ponent in the gap, and derive the solution for ve(r) with the given boundary
conditions.
(hint: 2D steady incompressible N-S equations in cylindrical coordinate
Lo 1dvg
rar ) g =
e i [0 (10 NP 20n)
o " r o8 ar (-r Bre o ) * r2 062 r2 0f r

Avg g Dvg L U d (10 \ 1 Pvg 2 o, 1dp
=V |— |\ ——\ry = 5 - — =
"o )T R0l T2 oe | T ron

v, —— - rv
" or r oo r ror ’
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4. Please discuss the various contributions to fluid dynamical drag, paying particular attention
to the mechanisms and their relative contribution to total drag for the following situations.

a. Fully immersed object with Reynolds number less than one.
b. Fully immersed object with Reynolds number much greater than one.

c. Object moving at fluid interface such as a ship on the ocean.



Name Fall 2006

Qualifying Exam: Fluid Mechanics

CLOSED BOOK

This portion of the qualifying exam is closed book. You may have a calculator.

Work 3 of the 4 problems. Be very clear which 3 you want graded (see below).
It is not acceptable to work all 4 problems and hope that the graders pick out
the best worked three.

[ want problems #___,#___,and #___ graded.

Be sure to put your name on all papers handed in, including this cover sheet.

3. Consider a beaker of water in which are contained a few small bits of tea leaves that have
absorbed water and sunk to the bottom. The fact that they are tea leaves is not important,
rather what is important is that there are some small bits of matter that are somewhat
denser than water.

Now a spoon or swizzle stick is use to vigorously stir the water in a circular fashion, causing
the water to rotate more or less about the vertical axis of the beaker centerline. At first the
tea leaves are dispersed, but are then observed to sink back to the bottom and migrate
toward the center of the beaker bottom where they remain.

Please explain this behavior form a fluid mechanical standpoint.
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4. You are to use an integral control volume analysis to determine the laminar
boundary layer thickness ¢ as a function of x. Consider the flow over a smooth flat
plate of a Newtonian fluid, with no pressure gradient in the flow direction. As the
solution is approximate the choice of boundary layer velocity profile is somewhat
open. The main physics, however, can be captured with even a crude choice such
as

u(x,y)zuwﬁ 0<y<§, U=U, O<Y.

Use this simple profile. The properties viscosity, i, and density, p, are to be taken as
constant.

The steady-state control volume equations for x and y momentum are:

Fx =FSx+FBx =J upV'd/T
CcS

Fy = Fsy + FBy = LS‘UPV * dA
Here S and B designate surface and body forces. CS is the control surface, while u

and v are the x and y components of velocity vector, V.

The fluid may be assumed incompressible: [ .V -dA =0

Uoo —

A 4

\4

u(x,y)

A 4

«— o —>
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v
x



Qualifying Exam Spring 2003
Fluid Mechanics

This portion of the qualifying exam is closed book. You may have a calculator.
Work all three problems.

Problem 1:

The steady, flat plate laminar boundary layer, with zero pressure gradient, can be described by
solving the following PDE’s. You should recognize them.

ou oOv
—+—=0
ox oy
ou o*u  0%u
U—+v—=Vl —S+—
ox Oy ox~ 0Oy

Given the observation that the boundary is very thin when compared to its distance from the
leading edge of the plate, derive the simplified boundary layer equations below. You should do
this with an order-of-magnitude analysis.

Qoo
ox Oy
ou Ou o*u
U—+0—=v—
ox oy oy
y)\
—<<1
X




Problem 2:

The continuity and momentum equations for 2-D flow for a cylindrical coordinate system are:

ou , 10(rv)
Ox r oOr

=0

ou volur) 1ép [d%u 16[ 6uj_
U—t+———F ==tV —+——| I—
ox r Oor pox | 0x" ror( or)]

ov volvr) 1op [ 10( ov
uT—+———"=———+4+V|—+——| 11—

ox r or p or _8X2 ror\ or)|
where u and v are velocity components in x and r direction respectively. Simplify the above
equations to obtain the momentum equation for hydrodynamically fully developed flow in a
circular tube. Use the resulting equation and appropriate boundary condition to obtain velocity
distribution for hydrodynamically fully developed flow in a circular tube. Find mean velocity uny
and express the velocity distribution in form of u/uy, = {(1).

rt
o
—F===p X &S




Problem 3:

A flat plate of length L and height d is placed at a wall and is parallel to an approaching wall
boundary layer, as in the figure below. Assume that there is no flow in the y-direction and that in
any plane y = constant, the boundary layer that develops over the plate is the Blasius solution for
a flat plate. If the approaching wall boundary layer has a velocity profile approximated by:

u(y) = U[sin(’;—gﬂ

Find an expression for the drag force on the plate. Recall the transformation of variables in the
Blasius problem: = (Ue / ZVX)I/ZZ and u = U.f'(n), where U_. is the velocity at the edge of the
boundary layer and z is the coordinate normal to the plate. Further, f"(0) = 0.4696.

y
A




Qualifying Exam Spring 1999
Fluid Mechanics

This portion of the qualifying exam is closed book. You may have a calculator.
Work all six problems

Problem 1:

A fully loaded Boeing 777-200 jet transport aircraft weighs 715,000 1bf. The pilot brings
the 2 engines to a full takeoff thrust of 102,000 Ibf. each before releasing the brakes.
Neglecting aerodynamic drag and rolling resistance, estimate the minimum runway
length and time needed to reach a takeoff speed of 140 mph. Assume engine thrust
remains constant during the ground roll.

Problem 2:

Water, at volume flow rate of Q = 300 gpm, is delivered by a fire hose and nozzle
assembly. The hose (L =200 ft., D =3 in., and e/D = 0.004) is made of four 50 ft.
sections joined by couplings. The entrance is squared edged (K, = 0.5); the minor loss
coefficient for each coupling is K, = 0.5, based upon the mean velocity through the hose.
The nozzle loss coefficient is K, = 0.02, based upon the velocity in the exit jet of D, = 1.0
in. diameter. Estimate the supply pressure required at this flow rate.

Problem 3:

The differential equation determining the velocity profile for the laminar, incompress-
ible, steady flow of a fluid through a annular conduit is

d*w(r)  1lduw(r) i Co
dr2 ' r dr L

=0 (1)

in which C, = —j—g = const. is the pressure gradient causing the flow. Determine the

equation for the velocity profile u(r) by solving Eq.1 if the coefficient of viscosity p is
constant and the boundary conditions are

1. u(rl) =0 Y

—
=t

2. ﬂ(?‘z} =0

u(r)\éé it

u(r)




Problem 4:

A gate, in the shape of a quarter-cylinder, hinged at A and sealed at B, is 2 m wide. The
bottom of the gate is 3 m below the water surface. Determine the force on the stop at B if
the gate is made of concrete (S.G.=2.4), R=2m.

Problem 5:

The pump shown creates a water jet oriented to travel a maximum horizontal distance.
System friction head losses are 6.5 m. The jet may be approximated by the trajectory of
frictionless particles. What power must be delivered by the pump?

A —




Problem 6:

Consider the graph below, which shows the drag coefficient, C,,, versus the Reynolds
number, Re.

a.) Explain what a boundary layer is and under what circumstances it is encountered.
b.) Explain the role of the boundary layer in the curve of Cy, vs. Re for the sphere

shown.
c.) Explain why the curve of Cy, vs. Re is so dramatically different for the sphere and

the disk or cup. -
d.) Explain how you could reduce the net drag force on the sphere using boundary-

layer control.
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Qualifying Exam Spring 1996
Fluid Mechanics

This portion of the qualifying exam is closed book. You may have a calculator.

Work all six problems

1. The sketch shows a sectional view through a submarine. Calculate the depth of sub-
mergence, y. Assume the specific weight of sea water to be 64.0 lb/ft>.

Atmos. pressure 29.0% Hg

Yiy

Conventianal
barometer

= 1
e j Hg

2. The jet passes through a point A, as shown. Calculate the flow rate. Assume the flow
is frictionless and incompressible.

3. When the pump is started, strain gages at A and B indicate longitudinal tension forces

in the pipe of 23 and 100 lb., respectively. Assuming a frictionless sytem, calculate the
flowrate and the pump horsepower.




4. When oil (kinematic viscosity 0.001 ft*/sec., specific gravity of 0.92) flows at a mean
velocity of 5fps through a 2-in. pipeline, the head lost in 100 ft of pipe is 18 ft. What will
be the headloss when the velocity is increased to 10 fps?

6. Consider the two-dimensional viscous flow of an incoinpressible fluid through a conduit
whose upper wall is moving with a constant known velocity, U, as shown below. For this
so-called Couette flow the Navier-Stokes equation reduces to

duly,t) _ _13p &ulu.?)
ot ~  poz dy?

Assume that 8p/8z = const. = pC,, that the kinematic viscosity v is constant and solve
this equation for the velocity u(y,t). Assume the initial condition is u(y, 0) = 0.

I

ld }-———--U

>N

k(g &)

xhs
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Qualifying Exam Spring 1995
Fluid Mechanics

This portion of the qualifying exam is closed book. You may have a calculator.

Work all six problems

1. Calculate the h at which the gate will open.

2. A manifold pipe of 3 inch diameter has four openings in its walls spaced equally along the
pipe and is closed at its downstream end. If the discharge from each opening is 0.5 ft3/sec,

what are the mean velocities in the pipe between the openings? Assume a frictionless,
incompressible flow.

3. If a free jet of fluid strikes a circular disk and produces the flow pattern shown, what is
the flow rate? Assume an incompressible, ideal fluid.

4. Calculate the force, F, required to drive the scoop (hatched) at such a velocity that the
top of the jet centerline is 3m above the channel bottom. Assume the scoop and channel are

1.5m wide normal to the paper and that the scoop extracts all the water from the channel.
Assume frictionless, incompressible flow.




5. When a liquid flows in a horizontal pipe which has a diameter of 150mm, the shear stress
at the wall is 100N/m?. Calculate the the pressure drop in 30m of this pipeline. What is
the shearing stress in the liquid 25mm from the pipe centerline? Assume an incompressible,
steady flow.

6. (a.) What is a boundary-layer? (b.) Discuss Prandtl’s boundary-layer approximations
to the Navier-Stokes equations. (c.) Blasius’ non-dimensional form of the boundary-layer
equation for steady, incompressible flow past a flat plate is

a3 | d*f
_d{?gﬂ) i Ef () dn(zn)

=0,

in which f(n) is the non-dimensional stream function and 7 is the non-dimensional coor-
dinate normal to the plate. What are the boundary conditions for this equation? Discuss
what method(s) you might use to solve it. Note the dimensional velocity in the direction
parallel to the plate in the boundary-layer is

_py%m)
u=U i

where U is the constant uniform flow parallel to the flat plate outside the boundary-layer.



Qualifying Exam Spring 1992
Fluid Mechanics

This portion of the qualifying exam is closed book. You may have a calculator.

Work all problems

Problem 1. Consider the viscous flow found in a journal bearing as shown. The top biock
is fixed, the bottom plate moves from left to right with constant velocity U.

‘_’ l%////////////////////'] l
a1y 2
T/}/xfj/f/./zz’x//f///T//JU

Figure 2: Journal Bearing

a.) Develop the equation of motion from basic principles, using a free-body diagrem of
a fluid element. Your result should be in Eulerian form, u(z, v, z,t).

b.) Simplify the equation of motion for steady conditions, and considering the bearing
gap, d, to vary only very slightly with z.

c.) Using a solution of the above for constant gap height d, find u(y). Use this w find
the flow rate through the bearing per unit depth as a function of  and the pressure
gradient.

d.) Now considering d to vary linearly with z, find the force components on the upper
block, and finally the ratio of tangential to normal force. You may consider the
ambient pressure at each end of the journal to be the same. Comment on your

result and your approach.

Problem 2. A fireboat pump draws seawater (SG=1.025) from a 6-in. submerged pipe and
discharges it at 120 ft/sec through a 2-in. nozzle, as shown. Total head loss is § fi.
If the pump is 70% efficient, how much horsepower is required to drive it? Assume
uniform, steady flow.

D=2in

I ——

‘—"’? 120 (s
10 (t

6 [t




Qualifying Exam Spring 1991
Fluid Mechanics

This portion of the qualifying exam is closed book. You may have a calculator.

Work all problems

Problem 1:
Consider the the flow between the parallel plates as shown. The top plate is moving
with velocity U. Assuming the flow to be fully-developed and laminar,
a) find the equation of motion,
b) find an expression for the shear stress at the bottom surface,

b) find the velocity distribution and draw what you expect to be a typical velocitr
profile.

Problem 2:

Consider a single vane with turning angle, 8, moving horizontally at constant
speed, U. A jet of fluid with absolute velocity, V, strikes the vane.

a) Find the force which is delivered to the vane.

b) Find the power which the vane could deliver under the action of the water jet.
c) Find the value of U/V to maximize the power delivered by the jet.




Qualifying Exam Spring 1990
Fluid Mechanics

This portion of the qualifying exam is open book. You may have a calculator.

Work all problems

Question 1.

A uniform flow with velocity-u = U passes over a flat plate which is parzllel with the flow
to direction.A boundary layer develops near the surface of the plate as shown. Show that
the drag force (per unit depth) of the fluid on the surface is given by D =€ pu(l -+ <y
where § is the thickness of the boundary layer.

JMB

—_—
f——
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u=U 4 - —
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e
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Question 2.

A water gate in the shape of an L is shown. The gate maintains this L shape. but is free to
rotate about the hinge as shown. As water rises on the left side of the gate, the gate will

automatically open. Find the depth d above the hinge at which this will occur. Neglect
the mass of the gate.

SURFACE 7
.Y

\
|



Question 3.

Whalt is the fluid dynamic reason for dimpling a golf ball?

G.uxtsir‘\mq -

Two concentric cylinders are used to make a viscometer. The inner cylinder is station-
aery while the outer cylinder rotates at an angular velocity w. Assume that the fluid is
Newtonian and incompressible with constant properties. Assuming that the gap is small
compared to the radius, derive an equation for the viscosity x4 in terms of the torque re-
quired to rotate the cylinder at the steady velocity w. The cylinder radii are R; and R,,
and the fluid is in contact with a cylinder of length equal to L. Neglect any end efiects
and any friction due to bearings or seals. The flow is laminar with no secondary mota.

"""'Eo-—i
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Qualifying Exam Spring 1988
Fluid Mechanics

This portion of the qualifying exam is closed book. You may have a calculator.

Work all problems

1

[S%]

Derive an expression for the velocity field around an infinite circular cylinder
for an incompressible, irrotational flow given that the velocity field is uniform
at an infinite distance away from the cylinder.

. If the flow is viscous, discuss how the velocity field would differ from the inviscid

case.

3. Discuss each of the following:

a.) What is an inviscid flow?

b.) What is an irrotational flow? Can a viscous flow be irrotational? Can an
inviscid flow be rotational?

c.) What is a streamline, streakline, and a pathline?

d.) The velocity field for an irrotational, incompressible flow can be written in
terms of a scalar potential. Give the mathematical expression for this relation-
ship.

¢.) How are the streamlines oriented relative to the equipotential lines for a irro-
tational incompressible flow?

The equation modelling the transport of some quantity, ¢, in a transient one-
dimensional convective system with a uniform velocity is given by

0¢ d¢
el

where V is the fluid velocity, z is position, and ¢ is time. Approximate the aborve
equation with a finite difference equation. Keep it simple. Discuss the problems
associated with modelling the above equation with finite differences. Discuss nu-

merical dissipation, dispersion, and Gibb’s error.



5. An approximation for the velocity profile of a 2-D laminar boudary layer is
E_E(z)_l(zf
U 2\¢6 2\6
where ¢ is the local boudary layer thickness, such that
4.64

VE..

R., = = Reynold's Number

21
v

and U is the free stream velocity. If the fluid can be considered incompressible, find
an expression for the y velocity component v.



Qualifying Exam Miscellaneous
Fluid Mechanics

Gate AB has width W into the paper, is parabolic in shape, and is hinged at B. The open-
surface tank is filled to depth d with water, p = 998kg/m>. Given W = 10m, d = 8m. and
[ = 5m;

a) Find the resultant horizontal and vertical hydrostatic forces on the gate.

b) Find the lines of action of these forces.

c¢) What is the magnitude of force F' required to keep the gate closed?

Y A K

1

Consider the the fully-developed laminar flow down the inclined surface shown below.

a) Draw a free-body diagram for a fluid element.

b) Draw what vou expect to be a typical velocity profile and state the boundary condi-
tions.

¢) Find an expression for the shear stress at the srirface.

d) Find an expression for the flow rate per unit depth down the incline.

Free surface




Name Fall 2006

Qualifying Exam: Fluid Mechanics

CLOSED BOOK

This portion of the qualifying exam is closed book. You may have a calculator.

Work 3 of the 4 problems. Be very clear which 3 you want graded (see below).
It is not acceptable to work all 4 problems and hope that the graders pick out
the best worked three.

[ want problems #___,#___,and #___ graded.

Be sure to put your name on all papers handed in, including this cover sheet.

3. Consider a beaker of water in which are contained a few small bits of tea leaves that have
absorbed water and sunk to the bottom. The fact that they are tea leaves is not important,
rather what is important is that there are some small bits of matter that are somewhat
denser than water.

Now a spoon or swizzle stick is use to vigorously stir the water in a circular fashion, causing
the water to rotate more or less about the vertical axis of the beaker centerline. At first the
tea leaves are dispersed, but are then observed to sink back to the bottom and migrate
toward the center of the beaker bottom where they remain.

Please explain this behavior form a fluid mechanical standpoint.
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4. You are to use an integral control volume analysis to determine the laminar
boundary layer thickness ¢ as a function of x. Consider the flow over a smooth flat
plate of a Newtonian fluid, with no pressure gradient in the flow direction. As the
solution is approximate the choice of boundary layer velocity profile is somewhat
open. The main physics, however, can be captured with even a crude choice such
as

u(x,y)zuwﬁ 0<y<§, U=U, O<Y.

Use this simple profile. The properties viscosity, i, and density, p, are to be taken as
constant.

The steady-state control volume equations for x and y momentum are:

Fx =FSx+FBx =J upV'd/T
CcS

Fy = Fsy + FBy = LS‘UPV * dA
Here S and B designate surface and body forces. CS is the control surface, while u

and v are the x and y components of velocity vector, V.

The fluid may be assumed incompressible: [ .V -dA =0
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Name Spring 2007

Qualifying Exam: Fluid Mechanics

CLOSED BOOK

This portion of the qualifying exam is closed book. You may have a calculator.

Work 3 of the 4 problems. Be very clear which 3 you want graded (see below). It
is not acceptable to work all 4 problems and hope that the graders pick out the best
worked three.

I want problems # , , and # graded.

Be sure to put your name on all papers handed in, including this cover sheet.

1. Consider the incompressible flow of a fluid of viscosity i down an inclined plane, as shown
in the figure below. Assume that the flow is steady, one-dimensional (i.e. the only non-zero
component of velocity is along the x-axis) and the atmosphere exerts constant pressure and
negligible shear on the free surface. Derive and expression for u(y). (Note: the figure is a
cartoon, ignore the ‘waves’ you see on the surface).

Fieure 1
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CLOSED BOOK

2. Air at standard conditions flows past a smooth flat plate, as in the Figure below. A pitot
stagnation tube, placed 2 mm from the wall, develops a water manometer head h = 21 mm.

a. Estimate the flow speed parallel to the plate at the location of the tube.

b. Assuming a laminar flat plate boundary layer, estimate the position X of the tube.

Fioure 2o

————
——

Pt Boundary layer
20mis -7
— . —_— N
’,’ 2 mm
.«’
|“ X |

1. Navi

81!,1‘ ('-}l‘b!,j ﬁp 2 .
Tt = 2R v, i=1,2,3
p(ﬁf, +u38:r:_,-) 5:1:.,--'_“ w

2. Continuity equation for Incompressible Flows
du;
dui _
83:1-

3. Bernoulli's Equation

1 ., .
Pt pV* + pgz = constant along a streamline

=

4. Constitutive relation for Newlonian fiuids

OQu;  Ou, )

+

= —p0; +
T Pl u(@:rj 5.1'5
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Consider steady incompressible flow between two concentric cylinders
shown below. with radii a and b, respectively. Liquid of constant kinematic
viscosity v fills the gap between the cyliners. The inner cylinder (radius a)
rotates at a constant angular rate (V/a) and the outer cylinder (radius b) is
fixed in space,

Liquid seeps through the inner cylinder radially at a constant velocity
U; fluid also seeps radially through the outer cylinder. ASSUME that flow
parameters only depend on the radial distance v measured from the center
of eylinder a.

7

(a) Show that the radial velocity component in the entire gap region is given

by
all

Up =
-

(b) Write down the governing equation for vg. the tangential velocity com-
ponent in the gap, and derive the solution for ve(r) with the given boundary
conditions.
(hint: 2D steady incompressible N-S equations in cylindrical coordinate
Lo 1dvg
rar ) g =
e i [0 (10 NP 20n)
o " r o8 ar (-r Bre o ) * r2 062 r2 0f r

Avg g Dvg L U d (10 \ 1 Pvg 2 o, 1dp
=V |— |\ ——\ry = 5 - — =
"o )T R0l T2 oe | T ron

v, —— - rv
" or r oo r ror ’
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4. Please discuss the various contributions to fluid dynamical drag, paying particular attention
to the mechanisms and their relative contribution to total drag for the following situations.

a. Fully immersed object with Reynolds number less than one.
b. Fully immersed object with Reynolds number much greater than one.

c. Object moving at fluid interface such as a ship on the ocean.





