Course Number

and Title:

M E 405. Special Topics: Material Degradation and Protection

Catalog

N/A

Description:

• Credit Hours:

3 Credits (3)

Prerequisite(s) / Corequisite(s) Prerequisite(s): CHME 361

Corequisite(s): None

Required:

Elective for BSME Degree

Course Availability: N/A

• Instructor (Usual):

Dr. Vimal Chaitanya (See https://mae.nmsu.edu/people/faculty.html)

• Textbook:

- 1. McCafferty, E., *Introduction to Corrosion Science*, Springer, 2010 (ISBN-10: 1441904549 or ISBN-13: 978-1441904546)
- 2. Jones, D., *Principles and Prevention of Corrosion*, 2nd Ed., Pearson, 1995 (ISBN-10: 0133599930 or ISBN-13: 978-0133599930)
- 3. Hertzberg, R.W., Vinci, R.P., and Hertzberg, J.L., *Deformation and Fracture Mechanics of Engineering Materials*, 5th Ed., 2012 (ISBN-10: 0470527803 or ISBN-13: 978-0470527801)

Course Learning Objectives: After completing this course, a student should be able to:

Understand how and why material properties can degrade when they are exposed to conditions such as high temperatures, corrosive environments, repetitive loading (fatigue), and sustained loading at high temperatures (creep).

• Topics Covered:

- Electrochemical Principles of Corrosion
- Thermodynamics of Corrosion and Pourbaix (E-pH) Diagrams
- Kinetics of Corrosion (polarization, mixed potential theory, Tafel constants)
- Passivity
- Forms of Corrosion
- Techniques of Corrosion Prevention
- High Temperature Oxidation (Protective and Unprotective Oxide Film)
- High Temperature Deformation due to Creep (Temperature-Stress-Strain Rate relationships)
- Degradation Mechanisms and Maps
- Parametric Relations for Creep and Micro-mechanisms of Creep Rupture
- Cyclic Stress and Cyclic Strain Controlled Fatigue
- Fatigue Crack Initiation and Propagation Mechanisms
- 13. Fatigue Life Estimations and Avoidance of Fatigue Damage