 Course Number and Title: 	ENGR 233. Engineering Mechanics I (a.k.a., Statics)
 Catalog Description: 	Engineering mechanics using vector methods. Force systems, resultants, equilibrium, distributed forces, area moments, and friction.
• Credit Hours:	3 Credits (3)
 Prerequisite(s) / Corequisite(s) 	Prerequisite(s): ENGR 190 or MATH 1440 or MATH 1521G. Pre/Corequisite(s): PHYS 1310G or PHYS 1230G
• Required:	Required for BSME and BSAE Degrees
 Course Availability: 	Fall and Spring Semesters + Summer
 Instructor (Usual): 	John Ross Tapia (See <u>https://et.nmsu.edu/people/people-</u> <u>directory.html</u>)
• Textbook:	Tran, P., <i>SolidWorks 2022 Basic Tools: Getting started with Parts, Assemblies and Drawings</i> , 1 st Ed., SDC Publications, 2022 (ISBN-10: 1630574643 or ISBN-13: 978-1630574642).
 Course Learning Objectives: 	 After completing this course, a student should be able to: 1) Have an understanding of the force systems, resultants, equilibrium, distributed forces, area moments, and friction. 2) Be able to apply the acquired knowledge to formulate, solve and interpret solutions of engineering mechanics problems.
• Topics Covered:	Engineering mechanics using vector methods. Force systems, resultants, equilibrium, distributed forces, area moments, internal forces and friction.