 Course Number and Title: 	M E 511. Dynamics
Catalog Description:	An advanced study of the dynamical behavior of systems of particles and rigid bodies, with emphasis on the theoretical background of dynamics.
Credit Hours:	3 Credits (3)
 Prerequisite(s) / Corequisite(s) 	Prerequisite(s): (M E 328 and ENGR 234) or Consent of Instructor Corequisite(s): None
• Required:	Graduate Core
• Course Availability:	Fall Semester
 Instructor (Usual): 	Dr. Abdessattar Abdelkefi (See https://mae.nmsu.edu/people/faculty.html)
• Textbook:	 F. C. Moon, Applied Dynamics, 2008, John Wiley & Sons, Inc. H. Schaub and J. Junkins, Analytical Mechanics of Space Systems, 2009, AIAA Education Series.
 Course Learning Objectives: 	 After completing this course, a student should be able to: Learn techniques to describe the motion of mechanical systems Derive the equations of motion of dynamical systems Understand the difference between several methodologies used to derive the governing equations of systems Find and classify the dynamical responses of systems.
• Topics Covered:	 Kinematics of a single particle References frames Vector differentiation formula Dynamics of particles and systems of particles Lagrange equations Constraints: Holonomic and non-holonomic Phase portraits Non-conservative forces Coulomb friction Linear friction Impacts Rigid body kinematics in 3D Rotation matrix Euler angles Principle of virtual power for rigid bodies Multiple rigid bodies and introduction to small oscillations and normal modes Hamiltonian mechanics